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Abstract

Adequate problem representations require the identification of abstractions and approx-

imations that are well suited to the task at hand. Constructing such representations is

often difficult. In this paper we analyze the problem of automatically selecting adequate

models for the task of generating parsimonious causal explanations. This paper makes three

important contributions. First, it develops a precise formalization of the problem of finding

models that generate parsimonious causal explanations. In this formalization, models are

defined as sets of model fragments, causal explanations are generated using causal ordering,

and model simplicity is based on the intuition that using more approximate descriptions

of fewer phenomena leads to simpler models. Second, it uses this formalization to show

that, in general, the problem is intractable. In addition, it identifies three sources of in-

tractability: (a) deciding what phenomena to model; (b) deciding how to model the chosen

phenomena; and (c) satisfying domain-dependent constraints. Third, it introduces a new

class of approximations called causal approximations, that are commonly found in model-

ing the physical world. The basic idea underlying the definition of causal approximations

is that more approximate descriptions usually explain less about a phenomenon than more

accurate descriptions. As a consequence, the causal relations entailed by a model decrease

monotonically as models become simpler. This leads to the development of an efficient,

polynomial-time algorithm for finding adequate models when all approximations are causal

approximations.





1 Introduction

One of the earliest important ideas in Artificial Intelligence is :.,at effective prob-

lem solving requires the use of adequate models of the domain [2]. Adequate models

incorporate abstractions and approximations that are well suited to the problem solv-

ing task. Different types of abstractions and approximations have been identified for

a variety of tasks: abstractions in ABSTRIPS speed up planning by dropping select

operator preconditions [32]; approximations in mathematical domains simplify equa-

tion solving by ignoring negligible quantities [4; 31]; piecewise-linear approximations

of ordinary differential equations are used in PLR to analyze dynamic engineering

systems [33]; fitting approximations support efficient model sensitivity analysis [42;

43]; horn approximations of a logical theory allow efficient inference [35]. In this pa-

per we introduce a new class of approximations, called causal approximations, that

are commonly found in modeling the physical world. Causal approximations support

the efficient generation of parsimonious causal explanations.

Parsimonious causal explanations play an important role in reasoning about engi-

neered devices [45]. On the one hand, they are a vehicle for explaining phenomena of

interest to a human user. On the other hand, they can be used to focus subsequent

reasoning: in design, causal explanations allow the identification of changes to be

made to a device to create a better design; in diagnosis, causal explanations focus the

reasoning on just what could have caused a symptom; causal explanations can focus

quantitative analysis.

Causal explanations are usually generated from underlying device models [11; 15;

21; 23; 37; 47]. Hence, to generate parsimonious causal explanations, the underlying

device models must be as simple as possible. Device models can introduce irrelevant

detail into causal explanations either by modeling irrelevant phenomena, or by in-

cluding needlessly complex models of relevant phenomena. Consider the temperature

gauge in Figure 1, consisting of a battery, a wire, a bimetallic strip, a pointer, and

a thermistor. A thermistor is a semiconductor device; an increase in its temperature

causes a decrease in its resistance. A bimetallic strip has two strips made of differ-

ent metals welded together. Temperature changes cause the two strips to expand

by different amounts, causing the bimetallic strip to bend. The following is a causal

explanation of how the gauge works: the thermistor's temperature determines its re-

sistance. This determines the circuit current, which determines the heat generated in

the wire, and hence the bimetallic strip's temperature. This determines the bimetallic

strip's deflection, which determines the pointer's angular position.

To generate the above explanation, we model the wire as a resistor that dissipates

heat due to current flow. Modeling irrelevant phenomena (e.g., the electromagnetic

field generated by the wire) is unnecessary. Approximating the wire's resistance by as-

suming it is constant is adequate--more accurate models that include the dependence

of the wire's resistance on its temperature or length are unnecessary.

No single device model is adequate for generating parsimonious explanations for

all phenomena: every model will be either unnecessarily complex or too simple to
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Figure 1: A temperature gauge

explain some phenomenon. For example, suppose we wanted to redesign the above

temperature gauge to make its functioning independent of the atmospheric temper-

ature. To successfully achieve this goal, we need the following parsimonious causal

explanation for how the atmospheric temperature affects the angular position of the

pointer: the atmospheric temperature affects the bimetallic strip's temperature. This

determines the deflection of the bimetallic strip, which determines the angular po-

sition of the pointer. Note that this explanation used a much simpler model of the

temperature gauge than the previous explanation, e.g., the electrical aspects of the

device were deemed irrelevant. The resulting parsimony of the explanation allows the

redesign effort to focus on just the relevant phenomena.

In this paper we analyze the problem of automatically selecting adequate mod-

els for physical systems, with a focus on the task of generating parsimonious causal

explanations. 1 This analysis yields three important contributions. First, we develop

a precise formalization of the problem of finding models that generate parsimonious

causal explanations. Second, we use this formalization to show that, in general, the

problem is intractable, while also identifying the sources of intractability. Third, we

introduce a new class of approximations called causal approximations, that are com-

monly found in modeling the physical world. We show that when all approximations

are causal approximations, the above problem can be solved efficiently.

We cast the problem of automatically selecting adequate models as a search prob-

lem, requiring answers to the following three questions:

• What is a model, and what is the space of possible models? (What is the search

space?)

• What is an adequate model? (What is the goal criterion?)

• How do we search the space of possible models for adequate models? (What is

the search strategy?)

1For the purposes of this paper "device" and "physical system" are assumed to be synonyms.



1.1 What is a model and what is the space of possible mod-
els?

Models of physical systems are best expressed as a set of equations that describe

various physical phenomena occurring in the system. 2 However, rather than view-

ing a model as just a set of equations, we will view it as a set of model fragments

[14]. A model fragment is a set of equations that partially describe a single device

phenomenon at some level of detail. The set of such model fragments, (partially)

describing different aspects of the device, can be collected together in a library. This

library is a compact description of the space of all device models: different subsets

of the library correspond to different models, i.e., the model fragments in the library

are the "building blocks" out of which models are constructed. Model fragments are

the appropriate building blocks because: (a) they are easier to create than complete

models; (b) they can be reused in different models; and (c) not all meaningful physical

phenomena can be represented by a single equation. Section 2 discusses the details

of models and model fragments.

1.2 What is an adequate model?

The task of generating parsimonious causal explanations places two essential require-

ments on adequate models. First, they must be able to provide a causal explanation

for the phenomenon of interest. We construct causal explanations from a model by

generating the causal ordering of the parameters of the model using the equations

of the model. Second, the causal explanations must be parsimonious, i.e., the model

generating the explanations must be as simple as possible. We define the simplicity of

a model based on an approximation relation between model fragments. This definition

is based on the intuition that (a) a model is simpler if it models fewer phenomenon:

and (b) approximate descriptions are simpler than more complex ones. In addition

to these two fundamental criteria, we also require that adequate models satisfy any

user-specified domain-dependent constraints. Section 3 presents a detailed discussion

of our definition of model adequacy.

1.3 How do we find adequate models?

Given a library of model fragments, there is an exponentially large space of possible

device models. We will show in Section 4 that the problem of finding an adequate

model in this space of possible models is intractable (NP-hard). Intuitively, this

means that, to find an adequate model, we can do little better than to check a

significant fraction of this exponentially large space. Even for small systems, this

space is extremely large, so any brute force approach is out of the question. However,

this appears to contradict the observation that domain experts are able to provide

2Point of terminology: this notion of a model differs from the notion of a model used in mathe-

matical logic. Our notion of a model corresponds roughly to a logical theory.



parsimonious causal explanations after only a little bit of thought. This means that

the world provides additional structure, which can be exploited to develop an efficient

model selection algorithm.

In Section 5 we identify an important source of such additional structure. In

particular, we introduce causal approzimations, a new class of approximations that

form the basis of an efficient model selection algorithm. The basic idea underlying our

definition of causal approximations is that more approximate descriptions often tend

to involve fewer parameters. Furthermore, approximate descriptions tend to explain

less about a phenomenon than more accurate descriptions. An important consequence

of these properties is that when all approximations are causal approximations, the

causal relations entailed by a model decrease monotonically as the model become

simpler. Hence, if a model does not explain the phenomenon of interest, neither does

any simpler model. This leads to an efficient model selection algorithm, based on

simplifying the most accurate model as much as possible. Causal approximations

are particularly useful because they are commonly found in modeling the physical

world. Appendix A presents a number common approximations, all of which are

causal approximations.

The treatment in Section 5 is restricted to models that do not contain differen-

tial equations. Section 6 generalizes these results to models that contain differential

equations.

2 Models and model fragments

We will be concerned with models of the behavior of physical systems, typically

of engineered devices. Models of device behavior are best represented as a set of

equations that relate a set of parameters. In this paper we will only consider lumped

parameter models, which disregard the dependence of parameter values on spatial

location. However, we will consider both time-varying models, represented using

ordinary differential equations, and equilibrium models, represented using algebraic

and qualitative equations [5; 24]. 3 " ""

A device can be modeled in many different ways, i.e., it can be described by

different sets of equations. Different models can model different phenomena, or can

use different models for the same phenomena. Since a device can be modeled in a

variety of different ways, it is important that we be able to represent the space of

possible models of the device. We represent this space using model fragments.

2.1 Model fragments

A model fragment is a set of independent equations that partially describe some

physical phenomena. Different model fragments can describe different phenomena, or

can be different descriptions of the same phenomena. For example, Figure 2 shows

3Most of the research in qualitative reasoning about physical systems makes these assumptions.



a model fragment that describes electrical conduction in a wire by modeling the

wire as a resistor. Figure 3 shows a different model fragment that describes the same

phenomenon for the wire by modeling the wire as an ideal conductor. Finally, Figure 4

shows a model fragment that describes the temperature dependence of the wire's

length, a completely different phenomenon. (The equation ezogenous(q) represents

the fact that the value of q is determined exogenously by a mechanism that has not

been explicitly modeled; it can be viewed as a shorthand for the equation q = c for

some constant c.)

{Vw=i Rw}

Figure 2: Model fragment describing a wire as a resistor.

{vw = 0}

Figure 3: Model fragment describing a wire as an ideal conductor.

{L = L0(1 + - Two)),
ezoge, ous(,  ),
ezogenous( lwo )}

Figure 4: Model fragment describing the temperature dependence of the wire's length.

Model fragments, which can be viewed as either component model instances [11;

47], or process instances [15] 4, usually have applicability conditions (e.g., operating

conditions [11; 47] or quantity conditions [15]). There are well developed techniques

for handling such applicability conditions [7; 16; 22]. Hence, for simplicity, we will not

explicitly model and reason about these applicability conditions; rather we assume

that the only model fragments under consideration are the ones whose applicability

conditions are satisfied.

2.2 Models

A device model is constructed by composing a set of model fragments, i.e., rather

than viewing a model just as a set of equations, it is much more useful to think of

it as a set of model fragments. The equations of a model, viewed as a set of model

fragments, is just the union of the equations of the model fragments in the model,

4This is in contrast to model fragments in [14] which are class level, rather than instance level
descriptions of phenomena.



i.e., E(M), the equations of a model M, is:

E(M)= t0 m (1)
mEM

Other methods of combining equations axe also possible, e.g., influence combination

in [15]. Appendix B shows that the results of this paper can be easily extended to
handle these methods.

The primary advantage of viewing models as sets of model fragments is that the set

of applicable model fragments is an implicit representation of a very large set of device

models. This is because any subset of this set of model fragments can be composed

to form a model. 5 Hence, a library of model fragments is a compact representation of

an exponentially large set of models. Alternate representations of this large space of

models, e.g., by explicitly representing each model [1], are unrealistic. In the rest of

this paper, we will let Ad denote the set (or library) of applicable model fragments,

with every device model being a subset of Ad.

Another important advantage of model fragments is that, as compared to individ-

ual equations, they axe better suited to be the "building blocks" of models. This is

because model fragments allow us to collect together related sets of equations into a

single unit, making it possible to easily represent phenomena that cannot conveniently

be represented by a single equation.

2.3 Relations between model fragments

The model fragments in .h,4 are related to each other with the contradictory and

approximation relations, and are organized into assumption classes. These concepts

will prove to be important in the next section, where we give a precise definition of

model adequacy.

2.3.1 The contradictory relation

As mentioned earlier, different model fragments can be descriptions of different phe-

nomena, or can be different descriptions of the same phenomena. When model frag-

ments describe the same phenomena, they often make contradictory assumptions

about the domain. For example Figure 5 shows three different model fragments

describing electrical conduction in wire-l, which make mutually contradictory as-

sumptions. In particular, the first assumes that the resistance of the conductor is

zero, the second assumes that the resistance of the conductor is infinite, while the
third assumes that the resistance of the conductor is non-zero and finite.

We represent the fact that model fragments make contradictory assumptions about

the domain using the contradictory relation. If ml and m2 are model fragments, then

contradictory(ml,m2) says that ml and m2 make contradictory assumptions about

5As we shall see later, not every subset of model fragments is an adequate model, but the be_sic

observation still holds.



Ideal-conductor(wire-I):

Ideal-insulator(wire-I):

Resistor(wire-I):

= 0}

=

Figure 5: Model fragments describing electrical conduction in wire-1.

the domain. It is important to note that the contradiction between contradictory

model fragments cannot, in general, be derived from the equations of the model frag-

ments. For example, there is nothing intrinsically contradictory about the equations

of the first and second model fragments above, i.e., it is certainly possible that both

the current through a conductor and the voltage drop across the conductor is zero.

The contradiction between these model fragments is a consequence of a contradiction

between the assumptions underlying them. The contradictory relation is a simple

way of representing the contradiction between the underlying assumptions.

Clearly the contradictory relation is irreflexive (so that model fragments cannot

contradict themselves), and symmetric (so that model fragments are mutually con-

tradictory):

--,contradictory(ml, ml )

contradictory(m1, m2) _ contradictory(m2, m_ )

(2)

(3)

2.3.2 The approximation relation

In addition to specifying that model fragments contradict each other, a domain expert

may be able to specify that one model fragment is a more approximate description of

a phenomenon than another. This means that the predictions made by the more ac-

curate model fragment are "closer to reality" than the predictions made by the more

approximate model fragment. We represent such knowledge using the approxima-

tion relation between model fragments: approximation(m1, m2) says that the model

fragment m2 is a more approximate description of some phenomena than the model

fragment rnl. For example, Figure 6 shows some of the approximation relations be-

tween the model fragments shown in Figure 5.

approximation (Res i stor (wire - 1), Ideal-conduct or (wire- 1 ) )

approximation(Res istor (wire- I),Ideal- insul at or (wi re- I))

Figure 6: Approximation relation between the electrical conduction model fragments.

Once again, it is important to note that the approximation relation is a primitive,

domain-dependent relation, and this relation cannot be derived directly from the

equations of the model fragments. For example, there is nothing about the equations

of the ideal conductor model fragment that tells us that it is necessarily a more

approximate description of electrical conduction than the resistor model fragment;

this just happens to be a domain fact discovered by scientists and engineers.

7



Clearly the approzimation relation is irreflexive, anti-symmetric, and transitive

(so that model fragments are not approximations of themselves, and approximation

forms a partial ordering on the relative accuracy of the model fragments describing a

phenomena):

-_approximation(ml, ml ) (4)

approximation(rex, m2 ) =_ -,approximation(m2, ml ) (5)

approximation(m1, m2 ) A approximation(m2, m3 ) ::_ approximation(m1, m3 ) (6)

Furthermore, since approximations make different, and hence contradictory, predic-

tions about the same phenomenon, we will require that all approximations are also

mutually contradictory:

approximation(m1, m 2) =_ contradictory(m1, m2) (7)

2.3.3 Assumption classes

An assumption class is a set of mutually contradictory model fragments, i.e.. if ml

and m2 are model fragments, and A is an assumption class, we have:

(m,,m2 C A) A m 1 # m 2 ::_ contradictovy(m,,m2) (8)

An assumption class can be viewed as a modeling dimension. This view highlights

the fact that, to avoid using mutually contradictory model fragments, a choice needs

to be made along the modeling dimension represented by the assumption class. One

can see that the model fragments in Figure 5 form an assumption class describing
electrical conduction in the wire.

3 Adequate models

The adequacy of a model is closely tied to the task for which the model is to be

used. Simulations carried out during the final stages of detailed design require the

use of high fidelity models that incorporate accurate, quantitative descriptions of

all significant phenomena. On the other hand, models that support analysis during

conceptual design can be much coarser. Similarly, Hamscher [19, page 11] argues
that:

For complex devices the model of the target device should be constructed

with the goal of troubleshooting explicitly in mind.

In this paper we define the adequacy of a model with respect to the task of generat-

ing parsimonious causal explanations for phenomena of interest. Causal explanations

play an important role in automated reasoning systems as a vehicle for the system

to communicate with its human users. Such explanations can be used for instruc-

tional purposes, as in various Intelligent Computer Aided Instruction systems [6; 17;



41], or as a method for explaining the system'sline of reasoningto a humanuser [30;
39;40].

In addition to their role in communication,causalexplanationsplay a central role
in focusingother forms of reasoning[45]. Causalexplanationsare usedin diagnosis
to focus the reasoningonly on thoseelementsthat could have causeda particular
symptom [9]. Causalexplanationsfocusdesignand redesignby focusingthe reason-
ing on just those mechanismsthat can produce the desiredbehavior [48]. Causal
explanations can also guide quantitative analysisby providing an overall structure
for solving the problem at hand [10].

3.1 Causal explanations as causal ordering

Different types of causal explanations are generated depending on the particular vo-

cabulary used for modeling the causal relation. In this paper we adopt the vocabulary

commonly used in the literature on qualitative reasoning about physical systems [45]:

the causal relation relates parameters, and the causal relation represents a depen-

dence of the value of the "effect" parameter on the "cause" parameter. This causal

dependence between parameters induces a partial ordering on the parameters, called

a causal ordering.

The causal dependence between parameters can take one of two forms: functional

dependency and integration. The functional dependency of a parameter Pl on a pa-

rameter P2 corresponds to a causal mechanism that "instantaneously" determines the

value ,,f pl as a function of the value of P2 (and, possibly, some other parameters). We

have quoted the "instantaneously" to emphasize that what counts as "instantaneous"

is a modeling decision related to the time scale of interest [21; 25]. Causal relations

as functional dependencies were first studied in [37], and subsequently in [11; 23;

47] and in [15], where they are called indirect influences.

The other type of causal relations between parameters is the integration relation

between a parameter and its derivative. In contrast to functional dependencies that

act instantaneously, the integration relation acts over a period of time. Causal rela-

tions as integration have been studied in [21] and in [15], where they are called direct

influences.

3.2 Constructing the causal ordering

The causal ordering of a set of parameters is generated from the equations of a

device model. Functional dependencies are generated from algebraic and qualitative

equations, while integration relations are generated from differential equations. In

this and the next two sections we will discuss only the former; differential equations

will be discussed in Section 6.

Equations, as such, can be viewed as acausal representations of domain mecha-

nisms. For example, the equation V = iR (Ohm's law) is an acausal representation

of a mechanism for electrical conduction. It merely states that the voltage across an



electrical conductor, V. is proportional to the current through the conductor, i, with

the resistance of the conductor, R, being the proportionality constant. However, it

makes no causal claims like "the voltage depends on the current."

3.2.1 Causal orientations of equations

To have a causal import, equations must be causally oriented. A causally oriented

equation represents the fact that one of the parameters of the equation is directly

causally dependent on the other parameters of the equation. The dependent param-

eter is said to be causally determined by the equation. For example, the acausal

equation V = iR can be causally oriented so that it causally determines V, making

V directly causally dependent on i and R.

The causal orientation of an equation can be fixed a priori [15], or it can be

inferred from the equations comprising a model of the system [11; 21; 23; 37; 47].

Fixing the causal orientation of each equation a priori is overly restrictive, since

different causal orientations are often possible. However, not all causal orientations

fit a domain experts intuitions about causality. For example, the equation V = iR

can be causally oriented in one of two ways: either V can be causally dependent on

i and R, or i can be causally dependent on V and R. However, the third possibility,

R being causally dependent on V and i, makes no sense because, in an ordinary

electrical conductor, there is no way that changing V and/or i can cause a change in
R.

The set of allowed causal orientations of an equation, e, can be represented by the

set, Pc(e), of parameters that can be causally determined by e. As a typographical

aid, parameters that can be causally determined by an equation will be typeset in

boldface, e.g., V = iR says that this equation can causally determine V and i but

not R. We extend the function Pc to a set E of equations, and to a model M, in the

natural way (recall that a model fragment is just a set of equations):

Pc(E) = U Pc(e) (9)
eEE

Pc(M) = U Pc(m) (10)
mEM

In addition, let P(e) be the set of all parameters in equation e. As with Pc, extend

P to a set E of parameters, and to a model M, as follows:

P(E) = U P(e) (11)
eEE

P(i) = U P(m) (12)
rnEM

3.2.2 Causal mappings

Serrano and Gossard [36] make the key observation that, given a set of equations,

the causal ordering of the parameters can be generated efficiently by (a) causally

10



orienting eachequation such that eachparameter is causallydetermined by exactly
one equation;and (b) taking the transitive closureof the direct causaldependencies
entailed by the causalorientations.6

WeformalizeSerranoand Gossard'sobservationby first defininga causal mapping:

Definition 1 (Causal mapping) Let E be a set of equations. A function F : E --,

P(E) is said to be a causal mapping if and only if (a) F is 1-1; and (b) for each

e E E, F(e) E Pc(e). E is an onto c,,',_al mapping if for each parameter p E P(E),

there is an equation e E E, such that /ie)= p.

Hence, a causal mapping causally orients each equation such that each parameter is

causally determined by at most one equation, while an onto causal mapping causally

determines every parameter.

Note that the co-domain of F in the above definition is P(E) and not Pc(E),

even though condition (b) guarantees that the range of F is a subset of Pc(E). We

have chosen P(E) as the co-domain of F to ensure that when F is onto then each

parameter in P(E) is causally determined by an equation in E.

The direct causal dependencies entailed by a causal mapping F : E _ P(E) is

denoted by CF, and is defined as follows:

CF = {(pl,P2) " (3e E E) F(e)= P2 A p, E P(e)} (13)

In other words, (pl,p2) E CF if and only if p2 directly causally depends on pl in the

causal orientations defined by F. Denote the transitive closure of CF by tc(Cr). The

following lemma states that the transitive closure of different onto causal mappings of

E are identical. (We will soon discuss conditions under which onto causal mappings

exist.)

Lemma 1 Let E be a set of independent equations, and let F1 : E ---* P(E) and

F2 : E ---* P(E) be onto causal mappings. Then tc(CFI) = tc(Ct:2 ).

Proof: It suffices to show that CF, C_ tc(CF2). Let (q,p) E CFL, and let e E E such

that Fl(e) = p, and hence q E P(e). We show that (q,p) E tc(CF_). Construct the

sequence Po,Pl,... ,pro such that (a) P0 = P; (b) pi = F2(F_-I(PI-1)), for 1 < i < m;

(c) pm is the first repetition in the sequence, i.e., pi¢ pj,0 _< i,j <_ (m- 1),i ¢ j,

and pm= pi, for some i, 0 < i < (m - 1). Such a sequence must exist because F1 and

F2 are onto causal mappings, and because there are a finite number of parameters.

We claim that pm = P0, for if pm= pi for some i, 1 _< i _< (m - 1), then p,,-i =

F1 (F_ 1(pro)) = F1 (F_ l(pi)) = pi-1, which contradicts condition (c) above.

6Serrano and Gossard do not actually talk about causal ordering or causal orientations. They are
interested in efficiently evaluating a set of constraints. However, the parameter dependencies that
they generate are identical to the causal ordering, and their algorithm can be viewed as causally
orienting each equation. Hence, we attribute the above observation to them.

11



Next, let ei = F_-' (p,_, ), for 1 _< i < m. Hence, p,_, E P(e,) and p, = F2(e,),

so that (P_-I,P_) E CF2. Hence, by transitivity, (Pl,Pm) E tc(CF2), and since pm=

/90 = p, we have (p,,p) E tc(CF2). Now there are two cases: (a) if pl = q, then

(q,p) E tc(CF2); or (b) if p, _ q, then since p, = F2(e) and q C P(e), we have

(q,p_) E CF2, and by transitivity (q,p) E tc(CF2). []

Intuitively, the above proof shows that if Ft and F2 differ on the parameter to

which an equation e is mapped, then the parameters F_(e) and F2(e) are causally

dependent on each other.

3.2.3 Causal ordering

The causal ordering generated from a set of equations is the transitive closure of

the direct causal dependencies generated by any onto causal mapping of the set of

equations:

Definition 2 (Causal order) Let E be a set of independent equations, and let F :

E ---* P(E) be an onto causal mapping. The causal order of the parameters of E

denoted C(E), is the transitive closure of CF:

C(E) = tc(Cf)

The causal ordering is well defined because Lemma 1 assures us that the transitive

closures of all onto causal mappings of a set of equations are identical.

Figure 7 shows a set of equations describing the temperature gauge shown in

Figure 1. Figure 8 shows an onto causal mapping, while Figure 9 shows a graphi-

cal representation of the direct causal dependencies generated from this onto causal

mapping. The transitive closure of these direct causal dependencies corresponds to

the causal order generated by the equations in Figure 7.

Since generating the causal ordering requires an onto causal mapping, a natural

question that arises is: under what conditions does an onto causal mapping exist?

To answer this question we introduce complete sets of equations. Informally, a set

of independent equations is complete if it has as many equations as parameters,

and no subset of equations has fewer parameters than equations. One can see that

if some subset of equations had fewer parameters than equations, then that set is

overconstrained. _ More precisely, we have the following definitions:

Definition 3 Let E be a set of independent equations. E is said to be complete if

and only if (a) ]E I = IPc(E)I = IP(Z)l; and (b) for every S C_ E, IS I <_ IPc(S)l. s E

is said to be overconstrained if and only if there exists S C_ E such that ISI > IPc(S)t.

7Being independent, the possibility of the equations being merely redundant is ruled out.
S"l" I" returns the cardinality of a set.
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Linkage(bms-l,ptr-1)

Thermal-bms(bms-1)

Heat-flow(bms-l,atm-l)

Heat-flow(wire-l,bms-l):

Constant-temperature(arm-I):

Thermal-equilibrium(bms-1):

Thermal-equilibrium(wire-I):

Resistor(wire-I)

Constant-resistance(wire-l)

Thermal-resistance(wire-I)

Electrical-thermistor(thermistor-l)

Constant-voltage-source(battery-l)

8p: Pointer angle

Rt: Thermistor resistance

i_: Wire current

Vv: Battery voltage

T_: Wire temperature

f_b: Heat flow (wire to bms)

Kirchhoff's laws:

Input:

xb: Bms deflection

it: Thermistor current

V_: Wire voltage

Tb: Bms temperature

Tt: Thermistor temperature

f_: Heat generated in wire

: Op = klZb

: =b = k_Tb

.f : k4( - Tb)
exogenous( T, )

lwb = fw
: V_, = i_R_

: exogenous(R_)

:
: Vt = itRt; Rt = k5e k'_/T'

: ezogenous( Vv )

V,, = V,,, + Vt; iv = it; it = i,.

ezogenous (Tt )

R,_: Wire resistance

Vt: Thermistor voltage

iv: Battery current

T_: Atm temperature

fb_: Heat flow (bins to atm)

kj: Exogenous constants

Figure 7: A possible model of the temperature gauge

The following lemma states that an onto causal mapping exists if and only if the

set of equations is complete. This means that when a set of equations is complete,

all the parameters in the equations can be causally determined.

Lemma 2 Let E be a set of independent equations. Then there exists an onto causal

mapping F" E ---* P(E) if and only if E is complete.

Proof: Construct the bipartite graph G = (X, Y, R) 9 with X = E, Y = P(E), and

an edge in R connects a node (equation) e 6 X to a node (parameter) p 6 Y if and

only if p 6 Pc(e). 1° A matching in G is a subset of R such that no two edges in the

subset share a common node. A complete matching is a matching in which there is

an edge incident on every node. It is easy to see that an onto causal mapping on E

corresponds exactly to a complete matching in G. Hall's Theorem [12, pages 137-138]

tells us that G contains a complete matching if and only if (a) IX[ = IY[; and (b) for

every A C_ X, [A[ < IR(A)[, where R(A) denotes the set of nodes connected to the

nodes in A by edges in R. This is equivalent to stating that E is a complete set of

equations. []

9X kJY is the set of nodes and R is the set of edges. Each edge in R connects a node in X to a
node in Y.

l°This bipartite graph representation of the set of equations is due to [36].
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Op= kxzb • Op
Zb = k2Tb • Xb

Yb_= k3(Tb- To) _ f fb_

f_b = k4(T_ - Tb) _ Tbexogenous( Ta ) Ta

f_ = f_b _ f_b
Y_b=Y__ "_T_

V_ =i_R_ fw

exoyenous( t_ ) Vw

f_ = V_i_ iw
gt = itRt Rw

Rt = kse k6/Tt it

exogenous( Vo ) Rt

vo=vw+vt vo
iv = it Vt

it = iw iv

exogenous(Tt) , Tt

Figure 8: An onto causal mapping.

Figure 9: The direct causal dependencies generated by the above onto causal mapping

The above proof also suggests an efficient algorithm for constructing onto causal

mappings: construct a complete matching in the bipartite graph G defined above.

An efficient (polynomial time) algorithm for finding complete matchings in bipartite

graphs is described in [12]. Constructing the causal ordering from the causal mapping
is, of course, easy.

Having discussed causal ordering and how they are constructed from a device

model, we are now in a position to precisely define model adequacy. In the next four

subsections we will discuss the consistency and completeness of models, the expected

behavior. .main dependent constraints, and model simplicity. We will conclude with

a precise statement of the problem of finding an adequate model.
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3.3 Consistency and completeness of models

Any consistent device model must make a consistent set of assumptions about the

domain. Recall that when two model fragments make contradictory domain assump-

tions, they are related by the contradictory relation. Therefore, consistent models do

not use mutually contradictory model fragments. Similarly, in Definition 3 we defined

the notion of an overconstrained set of equations. If a set of independent equations is

overconstrained, then the equations have no solution, leading to a contradiction. Fur-

thermore, we would like an adequate model to causally determine all the parameters

in the model, i.e., we would like the equations of the model to be complete. These

observations lead directly to our definition of a consistent and complete model:

Definition 4 (Consistency and completeness) A model M is said to be consis-

tent if and only if the following two conditions are satisfied:

1. Vml, m2 E M -,contradictory(ml,m2), i.e., the model does not contain mutually

contradictory model fragments;

2. The set of equations of M is not overconstrained.

A model M is said to be complete if and only if the set of equations of M is

complete.

To ensure that adequate models make a consistent set of domain assumptions,

while providing complete descriptions of all phenomena, we have:

• An adequate model must be consistent and complete.

If we assume that the model in Figure 7 contains no mutually contradictory model

fragments, then it is both consistent and complete because the set of equations of the

model is complete (and hence not overconstrained).

3.4 Representing the phenomenon of interest

As discussed earlier, we will be defining model adequacy with respect to the task of

providing parsimonious causal explanations for the phenomenon of interest. Hence,

the phenomenon of interest is a crucial input that focuses model selection. We call

the phenomenon of interest the expected behavior. The expected behavior of a device

is an abstract description of what the device does (but not how it does it). The causal

explanation generated by a model is a description of how the expected behavior is

achieved.

Following our discussion of causal ordering, we specify expected behaviors as a

query that requests a causal explanation for how one parameter causally depends

on another. For example, the expected behavior of the temperature gauge shown in

Figure 1, representing its primary function, is:

causes( Tt , Op)
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This expectedbehavior requestsa causalexplanation for how the thermistor's tem-
perature causallydeterminesthe pointer's angular position.

The expectedbehavior providesus with our most important criterion for model
adequacy:

• An adequatemodelmustexplain theexpectedbehavior,i.e., a model isadequate
with respect to an expectedbehavior, causes(pl,p2), if it is able to provide a

causal explanation for how p2 causally depends on pl.

Since we can efficiently generate the causal ordering from a set of equations, it is

easy to check whether or not a model satisfies the expected behavior. The model

in Figure 7 is adequate with respect to the expected behavior causes(Tt, Op) because

Figure 9 shows that 0p is dependent on Tt in the corresponding causal ordering.

It must be noted that our language for expressing the expected behaviors is ex-

tremely simple; it only allows us to ask for explanations for causal dependencies

between parameters. More expressive languages are, of course, desirable. We might

want to include additional qualitative information, e.g., increasing Tt causes _p to

increase. Or we might want to include more information about the actual functional

relationship, e.g., a linear relationship between Tt and Pp.

However, the price we must pay for using more expressive languages for the ex-

pected behavior is that checking whether or not the expected behavior is satisfied

becomes very expensive, and can often even be impossible. For example, deciding

whether an increase in Tt causes an increase or a decrease in 0p with purely quali-

tative information is not possible when there are competing influences. Additional

information about the relative magnitudes of these influences is necessary, which may

or may not be available. Hence, we have chosen a simple, though useful, language

for expressing the expected behavior, leading to an efficient algorithm for deciding

whether or not a model satisfies the expected behavior.

3.5 Domain-dependent constraints

A domain expert often requires that an adequate model must satisfy a set of domain-

dependent constraints. For example, recall that model fragments are partial de-

scriptions of phenomena. Additional model fragments are required to complete this

description. A domain expert may require that the partial description of a model

fragment must be completed by the use of model fragments in a specified assump-

tion class, e.g., the partial description of electrical conduction specified by the model

fragment Resistor(wire-I) in Figure 5 must be completed by the inclusion of a

model fragment from an assumption class describing the wire's resistance. (See [14;

28; 29] for other examples).

We express such domain-dependent constraints using propos,:,onal coherence con-

straints. A propositional coherence constraint is just a propositional formula in which

the propositions are model fragments. A propositional coherence constraint is satis-

fied with respect to a model M just in case the corresponding propositional formula
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is satisfiedby the interpretation that assignstrue to a proposition if and only if the

proposition is in M, and false otherwise. For example, the propositional coherence
constraint

(rnlV m2) =_ m3

is satisfied by the model {ml, m3}, the model {m2, m3}, the empty model, etc.

As a convenient shorthand, we allow the use of assumption classes in proposi-

tional coherence constraints. Recall that an assumption class is a set of mutually

contradictory model fragments. Hence, we use an assumption class as a shorthand

for a disjunction of the model fragments in the assumption class. For example, if the

assumption class A contains the model fragments m4 and ms, then the propositional

coherence constraint

m3=_ A

is equivalent to the propositional coherence constraint

m3 :::k (m 4 V ms)

Let C denote the set of all domain-dependent constraints. We have the following:

• An adequate model must satisfy every propositional coherence constraint in the

set C of all domain-dependent constraints.

3.6 Simplicity of models

Thus far, we have said that an adequate model must be consistent and complete, must

be able to explain the expected behavior, and must satisfy all domain-dependent con-

straints. Typically a very large number of device models satisfy these criteria. Most

of these models introduce irrelevant detail into the causal explanations they generate,

either by modeling irrelevant phenomena, or by including needlessly complex models

of relevant phenomena.

For example, assume that the model in Figure 7 satisfies all the above criteria.

Other models that augment this model by modeling additional phenomena, such as

the electromagnetic field generated by the wire, would also satisfy the above criteria.

Similarly, models that use more accurate descriptions of phenomena that are already

modeled, e.g., by modeling the wire as a temperature dependent resistor rather than a

constant resistance resistor, would also satisfy the above criteria. Such models intro-

duce irrelevant detail into the causal explanation of how the thermistor's temperature

affects the pointer's angular position.

To address this problem we need a simplicity ordering on the models. Given such

a simplicity ordering, we will say that an adequate model is a simplest model that

satisfies all the above criteria, i.e., no simpler model satisfies the above criteria. The

simplicity ordering we consider is a partial ordering of the models, and is based on

the approximation relation between model fragments. This definition of simplicity

is based on the following two intuitions: (a) a model is simpler if it models fewer

phenomena; and (b) approximate descriptions are simpler than more accurate ones.
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Definition 5 (Simplicity of models) A model M2 is simpler than a model M1

(urritten M2 < M1) if for each model fragment m2 E M2 either (a) m2 E M1; or

(b) there is a model fragment ml E Ml such that m2 is an approximation of ml,

i.e., approximation(ml,m2). M2 is strictly simpler than _ll (written M2 < Ztll) if

and li

It is important to note that this definition of model simplicity is based purely

on the intuitions mentioned above. In particular, the definition does not guarantee

that a simpler model is more efficient. Nor does it guarantee that simpler models

lead to simpler causal explanations of the expected behavior. However, while there

are no such guarantees, we believe that the above definition of simplicity provides a

good heuristic for identifying more efficient models, and for generating simpler causal

explanations. In particular, it is common engineering practice to simplify models

by disregarding irrelevant phenomena and by using all applicable approximations.

Furthermore, in Section 5 we introduce causal approximations, which will ensure that

the the above definition of simplicity will, in fact, lead to simpler causal explanations.

We will require that adequate models be as simple as possible:

• An adequate model is a simplest model that meets all the criteria discussed
above.

3.7 Problem statement

We can now provide a precise statement of the problem of finding an adequate model.

The input to this problem is a tuple 2":

Z = (AJ, contradictory, approximation, .A, C, p, q) (14)

where A4 is the set of all applicable model fragments, contradictory and approxima-

tion are binary relations on model fragments that satisfy Equations 2-7, .A is the

set of all assumption classes, C is the set of domain-dependent propositional coher-

ence constraints, and p and q are parameters such that causes(p, q) is the expected

behavior. Using the elements of 2", we define coherent, causal, and adequate mod-

els. A coherent model is a consistent and complete model which satisfies all domain

dependent constraints.

Definition 6 (Coherent models) A model M C_ A4 is said to be a coherent model

if and only if the following conditions are satisfied:

1. M contains no mutually contradictory model fragments.

2. The equations of M are complete (and hence not overconstrained).

3. All the constraints in C are satisfied by M.

18



A causal model is a coherent model that also explains the expected behavior.

Definition 7 (Causal model) A model M C_ A,f is a causal model, with respect to

the expected behavior causes(p, q), if and only if (a) M is a coherent model; and (b) q

causally depends on p in the causal ordering generated from the equations of M. i.e.,

(p,q) 6 C(E(M)).

Finally, an adequate model is just a minimal causal model.

Definition 8 (Adequate model) A model M C_ A4 is an adequate model if and

only if M is a causal model and no coherent model strictly simpler than hi is a causal

model, i.e., for all coherent models M', such that M' < M, AI' is not a causal model.

The above definitions lead to the following statement of the problem of finding an

adequate model. We call this problem the MINIMAL CAUSAL MODEL problem:

Definition 9 (MINIMAL CAUSAL MODEL problem) LetZ be as in Equation 14. Find

an adequate model with respect to I.

To help in analyzing the complexity of the MINIMAL CAUSAL MODEL problem, we

introduce the CAUSAL MODEL problem, which is the decision problem corresponding

to the MINIMAL CAUSAL MODEL problem. The CAUSAL MODEL problem asks whether

or not there exists a causal model, without requiring this causal model to be minimal.

Definition 10 (CAUSAL MODEL problem) Let _ be as in Equation 14. Does there

exist a causal model with respect to lr ?

4 Complexity of model selection

In this section we analyze the complexity of the CAUSAL MODEL problem and the

MINIMAL CAUSAL MODEL problem. We will show that the CAUSAL MODEL problem

is NP-complete and, as an immediate corollary, that the MINIMAL CAUSAL MODEL

problem is NP-hard. Since it is strongly believed that P # NP, these results imply

that the general problem of finding adequate device models is intractable, i.e., there

is no polynomial time algorithm for finding adequate device models.

We prove that the CAUSAL MODEL problem is NP-complete by first showing that

it is in NP, and then showing that it is NP-hard.

Lemma 3 The CAUSAL MODEL problem is in NP.

Proof." It is easy (i.e., in polynomial time) to check whether a model contains mutu-

ally contradictory model fragments, and whether it satisfies all the constraints in C.

Using the comments following Lemma 2, it is also easy to check whether the model

is complete and whether it satisfies the expected behavior. D
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We show that the CAUSALMODELproblem is NP-hard by showing that three
of its special casesare NP-hard. The three special caseswill identify three sources
for the intractability of the CAUSALMODELproblem. Informally, the three sources
are: (a) deciding what phenomenato model; (b) deciding how to model the chosen
phenomena;and (c) ensuring that causalmodelssatisfy all domain-dependentcon-
straints. In the next section,we will use this knowledgeto designspecialcasesof the
MINIMALCAUSALMODELproblem that can be solvedin polynomial time.

In eachof the three special cases,the contradictory relation is restricted to par-

tition the set of model fragments into the set of assumption classes, i.e., two model

fragments are in the same assumption class if and only if they are mutually con-

tradictory, i.e., model fragments in different assumption classes cannot be mutually

contradictory:

(Vm,,m2 E All) m, 7_ m2 =_ (contradictory(ml,m2) - (3A E A) rn,,rn2 E A) (15)

Hence, we can view the problem of finding a causal model as one involving the fol-

lowing two steps: (a) selecting a set of assumption classes; and (b) selecting a single

model fragment from each selected assumption class. Intuitively, this corresponds to

deciding which phenomena to model (step (a)), and then deciding how to model the

chosen phenomena (step (b)).

The first special case consists of those instances of the CAUSAL MODEL problem

that satisfy the following two (additional) conditions: (a) the instance has no propo-

sitional coherence constraints; and (b) every causal model of the instance includes

a model fragment from each assumption class. Hence, this special case allows us to

identify the first source of intractability: choosing a model fragment from each as-

sumption class in a set of selected assumption classes is intractable. More abstractly,

even if we knew exactly which phenomena we wanted to model, deciding how to model

the chosen phenomena is intractable.

Lemma 4 The CAUSAL MODEL problem is NP-hard even if its instances are required

to satisfy the following conditions: (a) Equation 15; (b) C = 0; and (c) every causal

model of the instance includes a model fragment from each assumption class, i.e., if

M C M is a causal model and A E A, then M M A 7_ 0.

Proof: The proof is based on a reduction from the NP-complete problem ONE-IN-

THREE 3SAT [34], a variation of the common 3SAT problem in which an acceptable

truth assignment must satisfy exactly one literal in each clause. Let (U, C) be an

arbitrary instance of the ONE-IN-THREE 3SAT problem, where U = {ul,... ,u,} is

the set of boolean variables, and C = {cl,..., c,,} is the set of three literal clauses.

Construct an instance of the CAUSAL MODEL problem as follows.

Introduce a model fragment mt for each literal l, and a model fragment m:

M: {mu,: 1 < i < n}u{m , • 1 < i < nIU{m}
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Let mt and mf be contradictory:

contradictory(mu,,ma_), for 1 < i < n

To satisfy Equation 15, let .4 be defined as follows:

A= {{mu,,m,_}:l <i<n}U{{m}}

Let approximation be the empty relation and let C = 0. Introduce the set 7:' of

(m + n + 3) parameters:

P = {po, pl,..., p,,+,+_ }

and let p = po and q = pro+,,+2. Introduce the set E of (3rn + 2n + 3) equations:

E=( U E#)u( U F,)uG

l<j<m l<i<n

where E# contains an equation for each literal in clause cj, Fi contains an equation

for literals ui and ui, and G contains three equations, as follows:

Ej = {ejt : l is a literal in clause cj}

F, = {f.,,f_,}
G = {gl,g2,g3}

The parameters of the equations in E are defined as follows:

Ife E Ej,1 _< j _< rn,

IfecFi, l <i<n,

P(e) = {pj,pj+l }

P(e) = {p,.+i,p,,,+i+l}

P(gl) = {p0}

P(g2) = {p0,pl}

P(g3) = {pm+,,+l,p.,+.+_ }

P,(e)= {m+,}
Pc(e) : {Pm+i+l}

P,(gl) = {Po}
Pc(g2) = {Pl}
P_(92) = {Pro+.+2}

The equations in the model fragments of .A4 are defined as follows:

E(m,) = {e./,:literal/is in clause cj}U {f_}
E(m) = {g,,g_,g3}

That completes the reduction. Since p = p0, q = pro+.+2, and all equations (except

gl) relate consecutively numbered parameters, it is easy to verify that, in any causal

model, the dependence of q on p is mediated by the rest of the parameters:

(P =)Po _ Pl _ "'" _ pro+n+1 --+ Pro+n+2( = q)

Furthermore, the definition of Pc implies that pj+x can be determined only by

an equation in Ej, pro+i+1 by an equation in Fi, and p0, pl, p,,,+.+2 by go, gl, g2,
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respectively.11 Hence,one can seethat a model is a causalmodel if and only if it
includesexactly one equationfrom Ej, one from Fi, and all the equations in G. Since

the equations in Fi are only in model fragments rnu_ and ma_, any causal model must

include a model fragment from each assumption class (as required in the lemma).

Consider the following correspondence between truth assignments and models

that contain model fragment m: a literal l is true if and only if model fragment rnt

is in the model. We now show that a truth assignment is acceptable if and only the

corresponding model is a causal model. Let lj,, 1_2, 133 be the three literals in clause

cj. A truth assignment is acceptable if and only if for every clause, cj, exactly one

of ljl, lj2, lj3 is true, i.e., if exactly one of mtjt, mb_, mb_ is in the model, i.e., exactly

one equation from Ej is in the model. Furthermore, every truth assignment assigns

true to exactly one of ui and a;, i.e., the corresponding model includes either mu,

or rna_, i.e., the corresponding model includes exactly one equation from Fi. Since a

model is a causal model if and only if it includes exactly one equation from each Ej,

exactly one equation from each F,, and all the equations in G, it follows that a truth

assignment is acceptable if and only if the corresponding model is a causal model. []

The second special case of the CAUSAL MODEL problem consists of those instances

of the problem that satisfy the following two conditions: (a) the instance still has no

propositional coherence constraints; and (b) each assumption class has exactly one

model fragment. Since each assumption class contains exactly one model fragment,

any causal model can be viewed as merely selecting a set of assumption classes. Hence,

this special case identifies the second source of intractability: deciding which assump-

tion classes to select is intractable. More abstractly, deciding which phenomena we
want to model is itself intractable.

Lemma 5 The CAUSAL MODEL problem is NP-hard even if its instances are required

to satisfy the following conditions: (a) Equation 15; (b) C = $; and (c) every assump-

tion class in .A contains exactly one model fragment, i.e., the contradictory relation

is empty.

Proof: The proof of this lemma is a minor variation of the proof of Lemma 4. We

use exactly the same reduction used there, except that we do not make rnt and rn i

mutually contradictory, so that contradictory is the empty relation (as required).

Instead, we introduce a set Q = {ql,... ,q,} of additional parameters, a set H =

{hi,..., h,} of additional equations, with

P(hi) = Pc(hi)= {qi}, 1 < i < n

We then add equation hi to both mu, and ma,, so that any model that contains

both mu, and rna_ will be overconstrained. This is equivalent to making m,,_ and rna_

mutually contradictory, so that the rest of the proof is identical. []

llThis is true even if Pc were made identical to P (see [28]). However, the current definition of
Pc makes this fact transparent.
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An alternative view of the abovetwo results is that a fundamental sourceof in-
tractability is that a causalmodel is forced to choosebetweenmutually contradictory
model fragments. This wasenforcedin the first proofusingthe contradictory relation,

and in the second using overconstrained sets of equations. This suggests that other

ways of enforcing such a ,hoice would also lead to intractability. In particular, if C

contained constraints of the form -,rex v _m2 then any coherent model would have to

choose at most one of ml or m2, leading to intractability. The next case shows that

other simple types of propositional coherence constraints also lead to intractability.

The third special case of the CAUSAL MODEL problem consists of those instances

of the problem that satisfy the following conditions: (a) as in the first case, every

causal model of the instance includes a model fragment from each assumption class;

(b) model fragments in the same assumption class have the same sets of equations;

and (c) C contains only definite horn clauses (a definite horn clause is a disjunction

of literals with exactly one positive literal). Conditions (a) and (b) ensure that, if C

were empty, then finding a causal model would be trivial: a causal model exists if and

only if selecting an arbitrary model fragment from each assumption class leads to a

causal model. Hence, the intractability of this problem stems from the causal model

having to satisfy the constraints in C, even when the constraints are restricted to be
definite horn clauses.

Lemma 6 The CAUSAL MODEL problem is NP-hard even if its instances are required

to satisfy the following conditions: (a) Equation 15; (b) every causal model of the

instance includes a model fragment from each assumption class; (c) model fragments

in the _,ime assumption class have the same sets of equations; and (d) C contains

only definite horn clauses.

Proofi Once again we use a reduction from an arbitrary instance (U, C) of the ONE-

IN-THREE 3SAT problem. As in the earlier proofs, we introduce a model fragment

ml for each literal l, and make mt and mf mutually contradictory. Introduce the

set P = {p0,...,p,} of (n + i) parameters, and the set E = {e0,...,e,} of (n + i)

equations. Let p = po and q = p., and let

P(e0) = {p0} Pc(e0) = {p0}

P(ei) = {pi-,,pi} Pc(ei) = {pi},l <i < n

Assign the equations to the model fragments as follows:

E(m,,,) = E(m¢l)= {e0, e,}

E(m,,) = E(m,i_) = {e,},2 < i < n

It is easy to see that the above assignment satisfies constraints (b) and (c) above.

Finally, introduce the set C = l.Jx<j<m Cj of 3m propositional coherence constraints,

where Cj contains three constraints derived from clause c./. Let cj contain literals

ljl, lj2, lj3. Cj contains the following three constraints:
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cj = {(ml;, ^ -
(mt_ 1 A mt_s) = rob2,

(ml; ^ ml; ) -- ml,, )

It is easy to verify that these constraints are equivalent to a set of definite horn

clauses. Furthermore, in conjunction with the contradictory relation, they ensure

that every causal model contains exactly one model fragment from mb, , rnb2 , rnb_. In

fact, in conjunction with conditions (b) and (c) above, any model that selects a model

fragment from each assumption class, and selects exactly one model fragment from

each rob1 , rob2 , rob3 is a causal model. But this means that a model is a causal model

if and only if the corresponding truth assignment is acceptable (the corresponding

truth assignment assigns literal l to be true if and only if ml is in the model). []

An immediate consequence of any of the above three lemmas, in conjunction with

Lemma 3 is that the CAUSAL MODEL problem is NP-complete.

Theorem 1 The CAUSAL MODEL problem is NP-complete.

Since a causal model exists if and only if a minimal causal model exists, the

intractability of the CAUSAL MODEL problem immediately implies the intractability

of the MINIMAL CAUSAL MODEL problem.

Theorem 2 The MINIMAL CAUSAL MODEL problem is NP-hard.

5 Causal approximations

The intractability of the MINIMAL CAUSAL MODEL problem implies that any algo-

rithm for finding adequate models will be forced to search a significant portion of the

exponentially large space of possible device models. Unfortunately, even for fairly

simple devices, the space of of possible models is prohibitively large, making such

a search unthinkable. However, this intractability of finding adequate models seems

to directly contradict the informal observation that trained engineers are remarkably

good at providing parsimonious causal explanations for phenomena. One way to re-

solve this apparent contradiction is to assume that trained engineers are not solving

the general MINIMAL CAUSAL MODEL problem. Rather, the problem instances that

they normally encounter are drawn from a subclass of the MINIMAL CAUSAL MODEL

problem which can, in fact, be solved efficiently. In this section, we identify such an

efficiently solvable subclass. We believe that commonly encountered instances of the

MINIMAL CAUSAL MODEL problem are drawn from this subclass.
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5.1 Upward failure property

Intuitively, the reason that the MINIMAL CAUSAL MODEL problem is intractable is

that knowing whether a particular model is, or is not, a causal model tells us very

little about which other models are, or are not, causal models This means that there

is no "clever" way to organize the search for adequate models, allowing us to rule

out "large" parts of the search space by explicitly checking only a "small" part of the

search space. With this intuition in mind, we introduce the upward failure property.

The upward failure property is based on the intuition that if a model is unable

to explain the phenomenon of interest, there is little reason to believe that a simpler

model will be able to explain that phenomenon. We make this precise with the

following definition, which is similar in spirit to the one given in [44]:

Definition 11 (Upward failure property) An instance Z of the MINIMAL CAUS-

AL MODEL problem is said to satisfy the upward failure property if and only if for all

coherent models M C .M, if M is not a causal model, then no strictly simpler model

is a causal model, i.e., no model M' CAd and M' < M is a causal model.

In essence, the upward failure property property says that the simpler the model, the

less it can explain. Of course, it is by no means obvious that simpler models explain

fewer phenomena. However, it does seem to be standard engineering pr,,. rice that

models that account for more phenomena are more complex by our definition, i.e.,

modeling more phenomena more accurately leads to models that can explain more.

This is, of course, not an argument for claiming that the upward failure property

is satisfied by all commonly encountered instances of the MINIMAL CAUSAL MODEL

problem. Rather, it merely provides a motivation for our definition of the upward

failure property.

5.1.1 Finding a minimal causal model

If an instance, 2", of the MINIMAL CAUSAL MODEL problem satisfies the upward failure

property, a causal model can be simplified to a minimal causal model using the

function find-minimal-causal-model shown in Figure 10. This function takes two

arguments: (a) 2"; and (b) a coherent model M. It returns a minimal causal model

that is simpler than M. If there is more than one such minimal causal model, it

returns the first one it finds. If no such model exists, it returns nil.

The simplifications function, used in find-minimal-causal-model, when applied to

a coherent model M, returns the set of coherent models that are immediate simplifi-

cations of M. A coherent model M' is an immediate simplification of M if and only

if M' < M and there does not exist a coherent model M" such that M' < M" < M.

simplifications(M, 2") =

{M'" M' is coherent wrt 2" A M'<M

A (VM") M' < M" < M =*. M" is not coherent wrt 2"}

(16)
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function find-minimal-causal-model(2,, M)

/* 2" is assumed to satisfy the upward failure property */

/* M is assumed to be coherent */

if M is not a causal model then

/* Since no simpler model can be a causal model */
return nil

else

for each M' 6 simplifications(M, 2-) do

result := find-minimal-causal-model(2,, M')

if result # nil then

/* A simpler causal model has been found */
return result

endif

endfor

/* No simplification is a causal model, but M is */

return M

endif

end

Figure 10: Function find-minimal-causal-model

Find-minimal-causal-model(2,, M) works by systematically searching the immediate

simplifications of M, until it finds a causal model M' such that all the immediate

simplifications of M' are not causal models. The upward failure property then assures

us that M' is a minimal causal model. The following lemma establishes the correctness
of this function:

Lemma 7 Let 2, be an instance of the MINIMAL CAUSAL MODEL problem that sat-

isfies the upward failure property, and let M C_ Ad be a coherent model. Then

find-minimal-causaI-model(:T, M) returns an adequate model (i.e., a minimal causal

model) of I that is simpler than M, if it exists, and nil otherwise.

Proof: We prove this lemma by induction. There are two base cases: (a) if M is

not a causal model, then the upward failure property guarantees that there are no

causal models simpler than M, and the function correctly returns nil; and (b) if M is

a causal model with no immediate simplifications, then the function correctly returns

M. The inductive step also has two cases: (a) if the recursive call to every immediate

simplification of M returns nil, then the inductive hypothesis tells us that there is no

causal model strictly simpler than M, and since M is a causal model, the function

correctly returns M; and (b) if the recursive call to some immediate simplification,

M', of M returns a model, the inductive hypothesis ensures that this model is a
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minimal causalmodel that is simpler than M', and hence simpler than 31, and hence

the function correctly returns this model. []

The following lemma states that if the immediate simplifications of a coherent

model can be , omputed in polynomial time, then find-minimal-causal-model also

runs in polynomial time:

Lemma 8 Let 2, be an instance of the MINIMAL CAUSAL MODEL problem, and let

M C Ad be a coherent model. If the immediate simplifications of every coherent

model of 2, can be computed in time polynomial in the size of 2,, then find-minimal-

causal-model(2,, M) terminates in time polynomial in the size of 2,.

Proof." Excluding the recursive calls, the only significant work done by find-minimal-

causal-model(2,, M) is to check if M is a causal model, and to generate the immediate

simplifications of M (if necessary). Lemma 3 tells us that the former can be done

in polynomial time, while the latter can be done in polynomial time by assumption.

Hence, we need only show that there are a polynomial number of recursive calls to

find-minimal-causal-model. One caxl see that if find-minimal-causal-model returns nil,

it makes no recursive calls. Hence, one can verify that, of the recursive calls made

by find-minimal-causal-model, at most one can itself make recursive calls. Hence,

in conjunction with the fact that every call to find-minimal-causal-model can make

at most a polynomial number of recursive calls, it follows that the total number

of recursive calls is polynomial if and only if the maximum depth of the recursion

is polynomial. Now, every recursive call made by find-minimal-causal-model(2", M)

replaces the model M by an immediate simplification of M, constructed by dropping .

and/or approximating some set of model fragments in M. Hence, once a model

fragment, m, is removed from M, no deeper recursive call uses a model containing

m. Hence, the depth of the recursion is bounded by the number of model fragments

in Ad. Hence, the total number of recursive calls is polynomial. []

To find a minimal causal model of 2", we merely invoke the function find-minimal-

causal-model on each of the most accurate coherent models of 2". The most accurate

coherent models of 2" are those coherent models that are not strictly simpler than any

other coherent models:

{M : M is coherent A --,3M' M' is coherent A M < M'} (17)

Since every minimal causal model of 2" must be simpler than (though not necessarily

strictly simpler than) some most accurate coherent model of 2", it is easy to see that a

minimal causal model can be identified by systematically invoking find-minimal-cau-

sal-model on each of the most accurate models of 2". Hence, we have the following:

Theorem 3 Let Z be an instance of the MINIMAL CAUSAL MODEL problem that sat-

isfies the upward failure property. If the most accurate coherent models of 2, can be
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generated in time polynomial in the size of Z, and if the immediate simplifications of

any coherent model of :_ can be generated in time polynomial in the size of Z. then a

minimal causal model of _ can be found in time polynomial in the size of I.

Proof: Immediate consequence of Lemmas 7 and 8 and the above discussion. []

5.1.2 Discussion

We have seen that the upward failure property is useful because it leads to an efficient

algorithm for finding an adequate model. However, it has a major drawback: it is very

difficult to decide whether or not a particular instance of the MINIMAL CAUSAL MODEL

problem satisfies the upward failure property. For example, a straightforward use of

Definition 11 requires us to check every model in the space of possible models. Since

the space of possible models is exponentially large, any such check is unthinkable. In

fact, the upward failure property was suggested as a way around having to check the

whole space of possible models. Unfortunately, it does not seem to have succeeded in

helping us to circumvent this problem.

This drawback of the upward failure property stems from the fact that it is a

global property, i.e., a property of the whole space of possible models. What we want

is a local property that entails the upward failure property, i.e., a property of the

encoding of 2" that can be checked efficiently, that will ensure that 2" satisfies the

upward failure property.

We now present some local properties of 2" that ensure that the conditions of

Theorem 3 are satisfied. In particular, we will go back to the sources of intractability

identified in the previous section, and place appropriate restrictions on 2-: (a) we

will introduce a new class of approximations, called causal approximations, that will

address the problem of selecting model fragments from selected assumption classes;

(b) we will add additional constraints to C, called ownership constraints, that will

address the problem of selecting assumption classes; and (c) we will restrict the

expressive power of constraints in C.

5.2 Preliminary restrictions

We start by introducing three preliminary restrictions on 2-. First, we assume that the

contradictory relation partitions the set of model fragments into the set of assumption

classes (Equation 15). This assumption is based on the intuition that there is little

reason for descriptions of different phenomena to be mutually contradictory.

Second, we assume that each assumption class has a single, most accurate model

fragment:

(VA E A)(3m E A)(Vm' E A) m # m' =_ approximation(re, re') (18)

In other words, we assume that each phenomena has a single best description. This is

a reasonable assumption as long as we only model fairly well understood phenomena,
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i.e., wherethere is broad consensusamongstthe domain expertsabout how best to
model the phenomena.

Note that the aboverestriction appearsto bea problemwhen a givenphenomena
canbemodeledwith multiple ontologies.In suchcases,it may not be possibleto say
that one ontology is moreaccuratethan the other, leadingto multiple most accurate
modelfragmentsin an assumptionclass.However,this doesnot posea problem if the
differentontologiesarenot mutually contradictory, sothat model fragments that use
different ontologiesare in different assumptionclasses.This is often the case,since
different ontologiesare often usedfor different purposes.

An important consequenceof the aboverestriction is that it leads to 2" having
a singlemost accurate model: the most accuratemodel of 2" is just the set of most

accurate model fragments of the assumption classes of 2". This brings us to our third

assumption: we assume that the most accurate model of 2" is coherent. This ensures

that 2" has exactly one most accurate coherent model, and this model can be generated

in polynomial time.

5.3 Causal Approximations

The first source of intractability, i.e., having to choose model fragments from selected

assumption classes, is addressed by the introduction of causal approximations. The

basic idea underlying the definition of causal approximations is that more approx-

imate descriptions often tend to involve fewer parameters. Furthermore, more ap-

proximate descriptions tend to explain less about a phenomenon than more accurate

descriptions.

For example, Figure 5 showed different descriptions of electrical conduction, and

Figure 6 showed the approximation relation between these descriptions. Note that the

parameters in the equations of the more approximate descriptions (V_ = 0 and i,_ = 0)

are a subset of the parameters in the equations of the more accurate description (1_ =

iwRw). Furthermore, only Resistor(wire-l) is able to explain the relationship

between V_, iw, and Rw. In the following, we make the above idea precise, and

investigate its consequences.

5.3.1 Definitions

A local parameter is a parameter that can be causally determined only by equations

of model fragments in a single assumption class.

Definition 12 (Local parameters) A parameter p is said to be local to a model

fragment m 6 Ad if and only if p can be causally determined by the equations of m,

but not by the equations of any model fragment that does not contradict m:

p 6 P_(m) A (Vm' 6 .M) m # m' A p 6 PC(re') =v contradictory(re, re')

A parameter is said to be shared if it is not local to any model fragment.
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The aboveis usedin the following definition of causal approximations. The idea

underlying this definition is that if m2 is a causal approximation of ml, then any

causal orientation of the equations of m_ can be extended to a causal orientation of

the equations of ml, such that the latter causal orientation entails a superset of causal

relations, i.e., ml can explain more than m2:

Definition 13 (Causal approximations) A model fragment rn.2 is said to be a

causal approximation of a model fragment ml if and only if:

1. m2 is an approximation of ml;

_° There exists a 1-1 mapping G : m2 --_ ml such that for each e C m2, P(e) C

P(G(e)), and Pc(e) C Pc(G(e)). G is called a correspondence mapping, and e

and G(e) are said to be corresponding equations; and

3. Let E ° denote the equations of ml that have no corresponding equations in m2,

and let P" denote the set of parameters that are local to ml, but not local to

m2. Then there exists an onto causal mapping L : E* ---* P*. L is called a local

causal mapping with respect to correspondence mapping G.

Condition 1 ensures that causal approximations are approximations. Condition 2

ensures that for any causal orientation of an equation e E m2, there exists a causal

orientation of G(e) C ml which entails a superset of causal relations. Condition 3

ensures that additional equations in ml can be oriented to causally determine newly

introduced local parameters.

For example, the approximation relation between Temperature-dependent-re-

sistance(wire-l) and Constant-resistance(wire-I) shown in Figure 11 is a

causal approximation if we assume that Rw0, aw, and Two are local parameters of

Temperat ure-dependent -res istance (wire- I).

Constant-resi stance (wire- I) :

Temperature-dependent-res istance (wire- 1) :

{exogenous(Rw) }
{Rw = Rw0(1 + - T.,0)),
ezogenous(Rwo ),
exogenous( aw ),

exogenous(Two ) }

approximation(Temperature-dependent-resistance (wire- 1),

Const ant-res istance (wire- 1))

Figure 11: Model fragments describing a wire's resistance.

In particular, exogenous(R..,) and R._ = Rw0(1 + c_w(Tw- Two)) are corresponding

equations, and the local causal mapping, L, with respect to this correspondence

mapping is:

L( exogenous( Rwo ) ) = Rwo
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L(exogenous(, w)) = .w
L(exogenous(Two))= Two

One can show that the causal approximation relation between model fragments

is transitive. Hence, to check that all approximations are causal approximations, it

is sufficient to check that the immediate approximations of each model fragment are

causal approximations.

It is worth noting that the restriction that local parameters in a model fragment

cannot be causally determined by equations of model fragments in other assumption

classes is not a serious one. It is easy to convert a local parameter into a shared

parameter by defining a new assumption class. For example, to corn ..... aw (Figure 11)

into a shared parameter, we would (a) define a new assumption eL, vith one model

fragment m = {exogenous(aw)}; and (b)remove ezogenous(aw)from the equations

of Temperature-dependent-resistance(wire-l). After this conversion, (_w is not

necessarily local to any assumption class.

5.3.2 Causal approximations and the upward failure property

Causal approximations plays a key role in ensuring that the upward failure property

is satisfied. The following theorem tells us that when all approximations are causal

approximations, the causal relations entailed by a model decrease monotonically as

we simplify models without dropping assumption classes. This means that if a model

does not explain the expected behavior, then a simpler model that uses the same

assumption classes also does not explain the expected behavior. It is easy to see that

this is just a restricted version of the upward failure property.

Theorem 4 Let Z be an instance of MINIMAL CAUSAL MODEL such that all approx-

imations are causal approximations, and the contradictory relation partitions the set

.M of model fragments into the set A of assumption classes. Let M1,312 C_ A4 be

coherent models such that M1 and M2 contain model fragments from the same as-

sumption classes, and 312 <_ M1. The causal relations entailed by the equations

of 312 are a subset of the causal relations entailed by the equations of M_, i.e.,

C(E(M2)) C_ C(E(M1)).

Proof." Let F2 : E(M2) _ P(M2) be any onto causal mapping. We construct an

onto causal mapping F1 : E(M_) --_ P(M1) such that CF_ C_ CFt. For the equations

of each model fragment m C M1, define F1 as follows.

1. If m C M2, then for each equation in m, define F1 to be the same as F2.

2. Otherwise, there exists a unique m _ E 3/2 such that m' is a causal approximation

of m. Let G be the correspondence mapping between the equations of m' and

m and let L be the local causal mapping. For each equation e E m, if there is

an equation e' E rn' such that G(e') = e, then let F_(e) = F2(e'). Otherwise, let
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F,(e) = L(e). F1 is well defined on each equation in m, by Conditions 2 and 3

in Definition 13. Using Condition 2 in Definition 13, one can also verify that

the direct causal dependencies entailed by F1 restricted to m are a superset of

the direct causal dependencies entailed by F2 restricted to m'.

It is easy to see that F1 is well defined, since if rex, m2 6 M1 are any two distinct

model fragments, the range of F1 restricted to equations in ml is disjoint from the

range of F1 restricted to equations in rn2. Since F1 is defined for all equations in

E(M1), and M1 is coherent, it follows that F1 is an onto causal mapping. Finally,

using the last sentence in point 2 above, it is easy to see that CF_ C_ CF,. [2

The above theorem can be illustrated graphically by considering the model result-

ing from replacing Constant-resistance (wire-1) by Temperature-dependent-re-

sistance(wire-I) in the model shown in Figure 7. The direct causal dependencies

generated by a causal mapping on the equations of this model are shown in Fig-

ure 12. In comparing this figure with the direct causal dependencies in Figure 9 one

can see that they are identical except (a) Rw is now determined by the equation

P,_ = Ro0(1 + aw(To - Too)) instead of the equation ezogenous(R_); and (b) the

additional parameters, Rwo, aw, and Too, are determined by the additional equations,

ezogenous(P,_o), exogenous( ao ), and ezogenous( Too ), respectively. One can easily

verify that the causal dependencies have increased monotonically with this replace-
ment.

Figure 12: The direct causal dependencies resulting from replacing Constant-resis-

tance(wire-l) by Temperature-dependent-resistance(wire-l) in the model of

Figure 7

As a consequence of the above theorem, if a coherent model does not explain the

expected behavior, it follows that no simpler coherent model that uses the same set

of assumption classes can explain the expected behavior. Hence, when all approxima-

tions are causal approximations, a restricted version of the upward failure property is

satisfied. Note that, unlike the upward failure property, it is easy to decide whether

or not all approximations are causal approximations.
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Causal approximations are particularly useful because they are commonly found in

modeling the physical world. Table 1 shows a list of commonly used approximations,

all of which are causal approximations.

Inertialess objects

Inviscid flow

Frictionless motion

Zero or constant gravity

Non-relativistic mass and motion

Ideal thermal insulators and conductors

Ideal electrical insulators and conductors

Rigid bodies
Elastic collisions

Ideal gas law

Ideal heat engines

No thermal expansion
Constant thermal conductance

Constant resistance and resistivity

Table 1: Examples of causal approximations

The details of the above causal approximations, including the actual equations

used, can be found in Appendix A. The ubiquity of causal approximations suggests

that we have identified an important property of commonly occurring instances of

the MINIMAL CAUSAL MODEL problem.

5.4 Selecting assumption classes

While the use of causal approximations addresses the first source of intractability, it

does not address the second source (i.e., the problem of selecting assumption classes).

A simple example illustrates that causal approximations alone are not sufficient to

ensure that the causal relations decrease monotonically as models are simplified by

dropping model fragments. Let A_ = {mll,ml2} and A2 = {m2} be assumption

classes, and let the equations of model fragments rnll, m12, and rn2 be defined as

follows:

Furthermore, let m12 be an approximation of roll. It is easy to verify that ml2 is a

causal approximation of ml,. Let M1 = {m,l,m_} and M_ = {m,2} be two models.

Assuming that there are no propositional coherence constraints, it is easy to verify

that both M1 and M2 are coherent models, and that Ms < M1. However, y causally

depends on x in the causal ordering generated from M1, while x causally depends on

y in the causal ordering generated from M2. Hence, in simplifying M1 to M_, the

causal relations have not decreased monotonically, and the upward failure property

is not satisfied.

Intuitively, the problem appears to be that, M2 does not include all phenomena

that were possibly "relevant" to its parameters. In particular, M2 used the parameter

x, but did not include rn2, even though an equation in rn2 could causally determine

x. We use this intuition to ensure that the causal relations decrease monotonically

even when models are simplified by dropping assumption classes. We formalize this
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intuition by defining a set of ownership constraints that will ensure that coherent

models include all possibly "relevant" phenomena.

The parameters owned by an assumption class are the parameters that can be

causally determined by some equation of some model fragment in the assumption
class.

Definition 14 (Parameter ownership) The parameters owned by an assumption

class A, denoted by owns(A), are the parameters that can be causally determined by

the equations of model fragments of A:

owns(A) = U P¢(m)
rnE A

One can view an assumption class as being possibly "relevant" to the parameters

that it owns. We ensure that coherent models will contain model fragments from all

possibly "relevant" assumption classes, by adding constraints of the form

m =_ A

to the set C of propositional coherence constraints, whenever assumption class A

owns a parameter that can be causally determined by an equation in m, i.e., when

Pc(m) f7 owns(A) is not empty. This will ensure that whenever a coherent model

contains model fragment m, it will also contain a model fragment from A. We call

the above set of constraints ownership constraints:

Definition 15 (Ownership constraints) Let Z be an instance of the MINIMAL

CAUSAL MODEL problem. The set 0 of ownership constraints of I are defined as

follows:

O= {m=C, A:mE.A/l A AEA APc(m) nowns(A)#O}

When C contains all the ownership constraints we can extend Theorem 4 to all

coherent models.

Theorem 5 Let 2r be an instance of MINIMAL CAUSAL MODEL such that all approx-

imations are causal approximations, and the contradictory relation partitions the set

.£4 of model fragments into the set ,4 of assumption classes. Let C contain all the

ownership constraints of :T. Let M1, M2 C .AA be coherent models such that M2 <_ 311.

The causal relations entailed by the equations of 312 are a subset of the causal relations

entailed by the equations of 2141, i.e., C( E( M2 ) ) C_ C( E( MI ) ).

Proof: Let F_ : E(M_) ---* P(3/1) and F2 : E(M2) ---* P(M2) be any onto causal

mappings. Using F1 and F2 we construct an onto causal mapping F : E(MI) ---+

P(M1) such that CF2 C CF. Let us partition 3/1 into two mutually disjoint sets Mll

and Ml2 such that Mn and M2 have no model fragments from the same assumption

classes, while 3/12 and M2 have model fragments from the same assumption classes.
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SinceC contains all the ownership constraints, it follows that the range of/'1 restricted

to E(Mll) is disjoint from the range of F2 (otherwise an equation in E(M2) could

causally determine a parameter owned by an assumption class not used in M2).

Define F as follows. For each equation in E(Mla) let F be identical to F1. Define

F on the equations in E(M12) in exactly the same way as was done in the proof

of Theorem 4, i.e., causally orient corresponding equations in the same way, and

orient the remaining equations according to the local causal mappings. F is well

defined because the last sentence in the above paragraph ensures that the ranges of

F restricted to E(Mll) and F restricted to M12 are disjoint. F is an onto causal

mapping because F is defined on every equation in E(M1) and M1 is complete. As in

the proof of Theorem 4, it is easy to see that the direct causal dependencies entailed

by F2 are a subset of the direct causal dependencies entailed by F restricted to M12,

and hence CF2 C CF. rn

To illustrate the above theorem, consider the model fragment shown in Figure 13,

which describes the electromagnetic field generated in the wire. (M+(_, i_) is a qual-

itative equation stating that the magnetic moment, #w, is proportional to the current,

iw.) Now consider the model resulting from adding Electromagnet (wire-l) to the

model shown in Figure 7. Since none of the model fragments in the original model

can causally determine #w, there are no relevant ownership constraints, and the above

theorem tells us that the resulting model entails a superset of causal dependencies.

Figure 14 shows the direct causal dependencies entailed by the resulting model, and

a comparison with with Figure 9 confirms the theorem.

Electromagnet(wire-1):{M+(D_,i_)}

Figure 13: Model fragment describing electromagnetism

it)

t
Tt it V,,,--"_ f,,,"'--'_f, ob"""_ fb_"""_ Tb _ Xb _ Op

R,,, Ta

Figure 14: The direct causal dependencies resulting from adding Electromag-

net (wire-l) to the model in Figure 7.

How reasonable are the ownership constraints? While they appear quite restric-

tive, under certain circumstances we get them for free. In particular, consi& '_ the
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situation in which eachequation cancausallydetermineexactly oneparameter. This
situation is found in QP Theory [15] and its derivatives,e.g., [14]. In this case all

the parameters are local to some assumption class, and hence no model fragment can

causally determine a parameter owned by a different assumption class. Hence, there

are no ownership constraints!

Unfortunately, as we have argued earlier, the constraint that each equation can

causally determine exactly one parameter is also restrictive. In the absence of this

constraint, the ownership constraints appear to be necessary to guarantee that the

upward failure property is satisfied.

5.5 Generating all immediate simplifications

Having established local conditions under which the upward failure property is sat-

isfied, we now turn to the other element of our efficient model selection algorithm:

efficiently generating the immediate simplifications of a coherent model. The com-

plexity of generating the immediate simplifications of a coherent model is critically

dependent upon the expressive power of the constraints in C. In fact, a consequence of

Lemma 6 is that if C contains definite horn clauses, then the immediate simplifications

of coherent models cannot be generated efficiently.

In [28] we show that a minimal causal model can be found efficiently if we restrict

the constraints in C to have the following form:

ml A m2 A... A mn =:_ A (19)

where ml, ms,..., m,, are model fragments, and A is an assumption class. However,

this restriction does not ensure that the immediate simplifications of a coherent model

can be generated efficiently. Hence, the efficient algorithm discussed in [28] is a mod-

ification of the function find-minimal-causal-model. In this paper, in the interests of

brevity, we will not discuss this modification. Rather, we will restrict the constraints

in C to have the following form:

m =_ A (20)

where m is a model fragment and A is an assumption class. (Note that the ownership

constraints have this form.) We now show that this restriction will ensure that the

immediate simplifications of a coherent model can be generated efficiently.

Informally, a model can be simplified either by approximating one of its model

fragments, or by dropping one of its model fragments (or by some combination of

approximating and dropping model fragments). Consider, first, simplifying a model

by approximating one of its model fragments. An acceptable approximation of a model

fragment m E M is an approximation, m _, of m such that the model resulting from

replacing m by m _ in M satisfies all the constraints in C. (However, notice that the

resulting model need not be coherent.)

Definition 16 (Acceptable approximation) Let M be a coherent model, and let

m E M be any model fragment. A model fragment m' is an acceptable approxi-

mation of m with respect to M if and only if (a) approximation(re,re'); and (b)
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(M \ {m})U {m'} satisfies all the constraints in C. An immediate acceptable approx-

imation of m with respect to M is an acceptable approximation, m', such that there

is no acceptable approximation m" with approximation(m", rn').

Given that the constraints in C are restricted as in Equation 20, it is easy to see

that if m' is an approximation of m, but m' is not an acceptable approximation of m

with respect to M, then no coherent model simpler than M can contain m'. A type

1 simplification of a coherent model, M, is a coherent model M' < M, where M' is

the result of replacing a model fragment m C M by one of its immediate acceptable

approximations.

Definition 17 (Type 1 simplification) Let M be a coherent model, and let m E

M be any model fragment. Let m I be an immediate acceptable approximation of rn

with respect to M. (M \ {m}) tA {m'} is a type 1 simplification of 2tl if and only if it

is coherent.

It is easy to verify that a type 1 simplification of M is an immediate simplification

of M, i.e., is an element of simplifications(M, Z). Furthermore, we have:

Lemma 9 The type 1 simplifications of M can be generated in polynomial time.

Proofi Immediate from the definitions and Lemma 3. []

Next, we consider simplifying a model by dropping model fragments. The follow-

ing lemma is the basis for identifying conditions under which model fragments can be

dropped. It tells us that if the result of replacing a model fragment, m E M, by one of

its immediate acceptable approximations, m _, does not lead to a type 1 simplification

of M, i.e., the resulting model is not coherent, then no model simpler than M can

contain m' or any of its approximations.

Lemma 10 Let M be a coherent model, and let m C M be any model fragment.

Let m' be an immediate acceptable approximation of m with respect to M, and let

M' = (M\ {m})U {m'}. If M' is not coherent, then every model strictly simpler

than M that contains either m' or any of its approximations, is also not coherent.

Proof." Let M2 < M be a model such that M2 contains a model fragment m2 that

is either m' or is an approximation of m'. Assuming that M2 is coherent, we show

that M' is also coherent. Let F2 : E(M2) ---* P(M2) be any onto causal mapping.

Let F : E(M_) _ P(M1) be an onto causal mapping constructed from F2 in the

same way that F was constructed from F2 in the proof of Theorem 5. Construct

an onto causal mapping F' : E(M') --_ P(M') as follows. Let F' be identical to

F on the equations of model fragments common to M' and M. That leaves only

the equations in m _. Define F' on the equations in m _ using F2 on the equations in

m2, by orienting corresponding equations in the same way and using the local causal
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mapping for the remaining equations (similar to the method used in the proof of
Theorem4). One canseethat F' is well defined for every equation in E(M'). Hence,

IE(M')[ _<IP(M')I. However, the only difference between M' and M is that m' is
replaced by m. Since m _ is a causal approximation of m, this replacement adds at

least as many parameters as equations, and hence [E(M)[ < [P(M)I. However, M

is coherent, so that IE(M)I = IP(M)I. Hence, IE(M')I = IP(M')I so that M' is
coherent. []

Hence, if no type 1 simplification of M contains an immediate acceptable approx-

imation of m, it follows that any immediate simplification of M not containing m

was constructed by dropping m from M (and not by replacing m by an immedi-

ate acceptable approximation). M(_, iel fragments like m are called removable model

fragments.

Definition 18 (Removable model fragment) Let M be a coherent model, and let

m E M be a model fragment, m is said to be removable from M if and only if replacing

m by any of its immediate acceptable approximations result.- in a model that 'is not
coherent.

Using the above definition and the preceding comments, we define the type 2

simplifications, which are the immediate simplifications of a coherent model generated

by dropping a set of model fragments.

Definition 19 (Type 2 simplifications) Let M be a coherent model. Then M' C

M is a type 2 simplification of M if and only if (a) M' is coherent; (b) every model

fragment in MkM' is removable from M; and (c) there is no coherent model M" C M
such that M' C M".

Using Lemma 10, it is easy to see that the type 2 simplifications are also immedi-

ate simplifications. We will shortly show how the type 2 simplifications of a coherent

model can be generated efficiently. Before doing that, we show that every immedi-

ate simplification of a coherent model is either a type 1 simplification or a type 2

simplification.

Lemma 11 Let M be a coherent model, and let M' C simplifications(M,Z). Then

M _ is either a type 1 or a type 2 simplification of M.

Proofi Assume that M' is not a type 1 or a type 2 simplification. Clearly M' ¢: M,

for otherwise a model fragment in M \ M' is not removable from M, in which case M'

is not an immediate simplification. (If all model fragments in M \ M' are removable,

then M' must be simpler than a type 2 simplification.) Hence, there are model

fragments m _ E M' and m E M such that approximation(m,m_). Let m" be an

immediate acceptable approximation of m with respect to M such that either m" is

the same as m', or approximation(m",m'), and let M"= (M\ {m})U {m"}. Such
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an m" must exist, and M" must be coherent, for otherwise Lemma 10 tells us that

M' is not coherent. Clearly, M" is a type 1 simplification of M, and M' < M".

Since M' is not a type 1 simplification of M, it follows that M' is not an immediate

simplification of M. []

To generate the type 2 simplifications of a coherent model we need to remove

minimal sets of removable model fragments. To identify such minimal sets of model

fragments, we introduce remove-beforeM, a binary relation on model fragments de-

fined with respect to a coherent model M. Intuitively, remove-beforeM(ml, rn2) says

that model fragment ml must be removed from M before (or with) model fragment

m 2 .

Definition 20 (Remove-before) Let M be a coherent model, and let ml, m2 E M

be model fragments of i. Let F : E(i) _ P(i) be any onto causal mapping.

remove-beforeM(ml, m2) is true, if and only if one of the following is satisfied: (a)

the assumption class of m2 is A2 and C contains a constraint ml _ A2, or (b) m 1

contains an equation el and m2 contains an equation e2, such that F(e2) = p2 and

p_ E P(el).

Condition (a) includes dependencies between model fragments stemming from the

constraint in C: because of the constraint rnl =_ A2, m2 cannot be removed from 3I

before ml. Condition (b) includes dependencies stemming from the causal ordering:

removing m2 before removing ml will result in an incomplete set of equations (intu-

itively, p2 will not be causally determined). As in Definition 2, the identity of the

causal mapping used does not matter, since we will be interested in the transitive clo-

sure of remove-beforeM. The importance of the remove-beforeM relation is embodied

in the following lemma:

Lemma 12 Let M be a coherent model. M' C M is a coherent model if and only 'if

for every m, • M', if remove-beforeM(ml, ms) then m2 • M'.

Proof: M' is a coherent model if and only if (a) all the constraints in C are satisfied;

and (b) there is an onto causal mapping F': E(M') --* P(M'). It is easy to verify that

M' satisfies all the constraints in C if and only if all the remove-beforeM constraints

stemming from C are satisfied. Since M' C M, F' can be obtained by restricting any

onto causal mapping F : E(M) _ P(]tf_ to the equations in E(M'). By using the F

used in defining remove-beforeM (Definition 20), it is easy to verify that F' is onto if

and only if all the remove-beforeM constraints stemming from F are satisfied. []

The above lemma provides us with an algorithm for finding all type 2 simplifica-

tions of a coherent model M. This algorithm is shown in Figure 15.

The algorithm proceeds by constructing a directed graph from the remove-beforeA¢

relation. The strongly connected components of this graph correspond to sets of model

fragments that must be removed simultaneously from M, i.e., rnl and rn2 are in the
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function find-type-2-simplifications( M, it)

/* Find all type 2 simplifications of a coherent model M */

type-2-simplifications _ nil

Construct a directed graph, G, whose nodes are the model fragments in M

and which has an edge from ml to m2 iff remove-beforeM(ml, m2)

Find the strongly connected components of G

for every strongly connected component, C, that has no edges entering it do

/* C is a minimal set of model fragments that can be removed from M */

/* to ensure that the resulting model is coherent. */

if all the model fragments in C are removable from M then

_dd (M \ C) to type-2-simplifications
eadif

endfor

return type-2-simplifications
end

Figure 15: Function find-type-2-simplifications

same strongly connected components if the transitive closure of the remove-beforeM

relation implies both remove-beforeM(ml, m2) and remove-beforeM(m2, ml). Hence,

a strongly connected component C that has no incoming edges is a minimal set of

model fragments that can be removed from M. If all the model fragments in C are

removable from M, then it is easy to see that M \ C is a type 2 simplification of

M. Furthermore, one can verify that any type 2 simplification of M must have this

form. Finally, it is easy to check that this algorithm runs in polynomial time. These

comments make the following lemma immediate:

Lemma 13 The function find-type-2-simplifications computes the type 2 simplifica-

tions of a coherent model in polynomial time.

The following theorem is an immediate consequence of the above lemmas, and the
earlier theorems.

Theorem 6 Let Z be an instance of the MINIMAL CAUSAL MODEL problem such

that all the approzimation are causal approzimations, and the contradictory relation

partitions the set .A/l of model fragments into the set A of assumption classes. Let

each assumption class have a single most accurate model fragment, and let the most

accurate model of Z be coherent. Let all the constraints in ¢ be of the form shown in

Equation 20, and let C contain all the ownership constraints of Z. Then a minimal

causal model of Z can be found in polynomial time.

Proof: Immediate from Theorems 3 and 5, and Lemmas 9, 11, and 13 [3
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5.6 Discussion

The techniques developed in this section have been incorporated into an implemented

automated modeling system. This system has been tested on a variety of electrome-

chanical devices drawn from [3; 26; 38], using a library of about 150 types of model

fragments, including descriptions of electricity, magnetism, heat, and the kinematics

and dynamics of one-dimensional motion. All approximations in this library are, of

course, causal approximations. The devices range in complexity from 10 to 54 com-

ponents, with each device having between 1012 and 10 z2 coherent models. In all cases,

the system found a minimal causal model in 0.5 to 8 minutes on an Explorer II.

A detailed description of this system and its empirical evaluation are beyond the

scope of this paper. The interested reader is referred to [28; 29]. However, two points

are worth noting. First, while no ownership constraints were used, there was no

loss in solution quality, i.e., minimal causal models were correctly constructed. We

conjecture that the reason for this is that most equations describing the physical world

do seem to have a natural causal orientation (in which case there are no ownership

constraints), and the few situations that do allow multiple causal orientations do

not lead to pathological situations. Second, the restricted expressive power of the

constraints in C did not prove to be a limitation. This is because our focus on the

task of generating parsimonious causal explanations has made the expected behavior

a central criterion for defining model adequacy, thereby decreasing the importance of

C in defining model adequacy.

6 Differential equations

In this section we generalize the results of the previous section to include models

involving differential equations. Recall that the treatment in Section 3 focused only

on functional dependencies between parameters, and excluded the integration relation

between a parameter and its derivative. We represent this integration relation with

the int equation: int(p,,p2) says that p2 is the derivative of p_. Note that int(p,,p2)

can be causally oriented in only one way, to causally determine px by integrating the

value of p2 over time. Given a set E of equations the integration completio_ ,f E

makes explicit all such integration links among the parameters of E:

Definition 21 (Integration completion) Let E be a set of equations. The inte-

gration completion of E, denoted ic( E), is defined as follows:

ic(E) = EU {int(q, dq/dt) : dq/dt E P(E)}

i.e., whenever P(E) contains a derivative, the integration completion of E contains an

int equation expressing the integration relation. Note that if E contains no differential

equations, then E = ic( E).

To include the causal dependency of a parameter on its derivative, we modify Def-

inition 2 to use ic(E) rather than E, i.e., the causal ordering is the transitive closure
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of an onto causal mapping defined on the integration completion of E. Similarly, in

defining complete and overconstrained sets of equations, we modify Definition 3 to

use ic(E) instead of E. These modifications are straightforward, and can be found

in [28]. We now show how the results of the previous section can also be generalized.

6.1 Canonical form

For many purposes, e.g., numerical integration [8] and causal ordering as defined in

[21], sets of differential equations are required to be in canonical form. A set of first-

order differential equations is in canonical form if each derivative occurs in exactly

one equation. For our purposes, we weaken this condition slightly. We shall say that

a set of first-order differential equations is in canonical form if each derivative can be

causally determined by exactly one equation. Hence, we allow a derivative to occur

in more than one equation, though exactly one equation can causally determine it.

We enforce this by assuming that the set .M of model fragments is in canonical form:

Definition 22 (Canonical form) A set of model fragments is said to be in canon-

ical form if and only if the following conditions are satisfied:

I. All derivatives are local parameters; and

2. If derivative dp/dt is local to model fragment m, then dp/dt can be causally

determined by exactly one equation in m.

Condition 1 ensures that derivatives can be determined by the equations of model

fragments in exactly one assumption class, while condition 2 ensures that exactly one

equation in each such model fragment can determine it. Hence, the above restrictions

ensure that the equations of all device models are in canonical form.

A consequence of the above restriction is as follows. Let dp/dt be a derivative

that is local to model fragment m, and let e be the equation of m that can causally

determine dp/dt. The integration completion of any set of equations that includes

e will introduce the equation int(p, dp/dt). Since dp/dt is local to m, this is ezactly

equivalent to augmenting the equations of m with the equation int(p, dp/dt). Using

this viewpoint, it is easy to verify that if m2 is a causal approximation of m_ (without

the augmentation), and the same set of derivatives are local to ml and m2, then m2

remains a causal approximation of ml even after the augmentation. This means that,

as long as the set of derivatives does not change, all the results of the previous section
remain true.

However, it may not always be the case that the same set of derivatives are local

to mx and m2. We now discuss this important case.

6.2 Approximating differential equations

Let rnl and m2 be model fragments such that m2 is an approximation of ml, and

let dp/dt be a derivative that is local to ml, but not local to m2. Intuitively, rnl
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describes a phenomenon using a dynamic model, i.e., a model involving differential

equations, while m2 approximates this description by describing the phenomena using

a static, or equilibrium, model. We will consider two types of approximations: called

exogenizing and equilibrating [21]. Exogenizing involves making the assumption that

the dynamic behavior of p is slow compared to the time-scale of interest, so that p

can be assumed to be constant. Equilibration involves making the assumption that

the dynamic behavior of p is much faster than the time-scale of interest, so that p

always appears to be in equilibrium (dp/dt = 0).

The effect that exogenizing and equilibrating have on a differential equation can be

illustrated with the following example. Consider the equation describing the dynamic

behavior of an object's temperature:

dT
--=CF
dt

where T is the object's temperature, C is its heat capacity, and F is the net heat flow

into the object. Exogenizing this equation results in:

exogenous(T)

which states that, at the time-scale of interest, there is no change in the object's

temperature. Equilibrating that equation results in:

F=0

which states that, at the time-scale of interest, the object's temperature appears to

remain in equilibrium with its environment by ensuring that there is no net heat flow

into the object. More generally, we have the following definitions of exogenizing and

equilibrating:

Definition 23 (Exogenizing and equilibrating) Let e be a differential equation

that can causally determine the derivative dp/dt, i.e., dp/dt C Pc(e).

• Exogenizing e involves replacing it with the equation exogenous(p).

• Equilibrating e involves replacing it with an equation e' such that (a) dp/dt

P(e'); (b) P(e') C P(e); and (c) Pc(d) c Pc(e).

Note that, in both exogenizing and equilibrating, the resulting equation does not

contain dp/dt.

We will now briefly discuss how the use of differential equations affects the results

of the previous section. A careful analysis of those results reveals that the only

two results that assumed that models did not contain differential equations were

Theorem 4 and Lemma 10. We now show that the former continues to hold, while

the latter holds under special conditions.
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6.3 Differential equations and the upward failure property

When using differential equations, the proof of Theorem 4 does not apply directly,

because of the presence of the additional int equations. 12 However, the upward failure

property, as embodied in Theorem 4, does continue to hold.

Theorem 7 Theorem 4 continues to hold even when models include differential equa-

tions that can be equilibrated and exogenized.

Proofi The proof of this theorem is somewhat involved, and we refer the inter-

ested reader to [28] for the details. Here we only provide a brief outline of the

proof. Let M1 and Ms be coherent models such that Ms < M1. Given any onto

causal mapping F2 : ic(E(M2)) ---* P(M2), we construct an onto causal mapping

F1 : ic(E(M1)) ---. P(M1), such that CF2 C_ tc(Crl). Recall that any onto causal

mapping can be viewed as a maximum matching in a bipartite graph (see the proof

of Lemma 2). Maximum matchings are constructed by first finding an initial, partial

matching, and then augmenting this matching using augmenting paths (see [12]). The

maximum matching corresponding to F1 is constructed by using the maximum match-

ing corresponding to F2 as the initial, partial matching. The crux of the proof lies in

showing that each augmentation of the partial matching results in a new matching

that, when interpreted as a causal mapping, entails a superset of causal dependencies.

A simple induction then shows that the onto causal mapping F1, corresponding to

the resulting maximum matching is such that CF2 C tc(CF1). []

6.4 Differential equations and immediate simplifications

When models contain differential equations that can be equilibrated, one can show

that a coherent model can have an exponential number of immediate simplifications

[28]. To address this problem, we impose a restriction on the types of differential

equations that can be equilibrated. In particular, we will require that the only equa-

tions that can be equilibrated are self regulating equations [21]. 13 Self regulating

equations are differential equations which can causally determine only the derivative,

dp/dt, and the parameter, p. Hence, if a self regulating equation is equilibrated, the

only parameter that the resulting equation can causally determine is p.

Definition 24 (Self regulating equation) An equation e is said to be self regulat-

ing with respect to the parameter p if and only if Pc(e)= {p, dp/dt}.

For example, consider the following self regulating equation, describing the velocity,

v, of a falling raindrop with mass m and a coefficient of drag k (g is the acceleration

due to gravity) [18]:

l_If differential equations are not approximated by equilibration, the proof does translate directly
(see [28]).

13In [28] we identify a slightly more general restriction.
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mdv/dt =mg - kv

The terminal velocity of this raindrop is obtained by equilibrating this equation,

resulting in the following:

kv =mg

Notice that the above equation can only causally determine v. This property is

exploited in the following proof of the updated version of Lemma 10.

Lemma 14 Lemma 10 continues to hold if the only differential equations that can. be

equilibrated are self regulating equations.

Proof: The proof is completely analogous to the proof of Lemma 10. The only

differences are as follows. First, when constructing F from F2, instead of using

Theorem 5, we use an updated version of this theorem, which uses the construction

outlined in Theorem 7. Second, F' is defined on the equations in m _ using F2 on

the equations in m2 in the same way, except on differential equations in rn' that are

approximated in m2. Let e_ E m' be a differential equation that determines derivative

dp/dt, and let e2 C m2 be the corresponding approximated equation. Since the model

fragments are in canonical form, e' and int(p, dp/dt) must be causally oriented to

determine dp/dt and p, respectively. This is well defined extension of the causal

mapping F2 because (a) dp/dt is local to m', and does not occur in ms; and (b) e2

must causally determine p. The latter fact follows because if e2 is an exogenized

version of e', then e2 is exogenous(p), and hence e2 must determine p. On the other

hand, if e2 is an equilibrated version of e', then because e _is a self regulating equation,

the only parameter that e2 can determine is p. In essence, e_ and e _, in conjunction

with int(p, dp/dt), behave like corresponding equations. []

The following theorem can be derived from the above two results in much the

same way that Theorem 6 was derived:

Theorem 8 Theorem 6 continues to hold if only self regulating differential equations

can be equilibrated.

7 Related work

One of the original inspirations for the work described here was Davis's work on

model-based diagnosis [9]. In that work, Davis presents a diagnostic method based

on tracing paths of causal interactions. He argues that the power of the approach

stems not from the specific diagnostic method, but from the model which specifies the

allowed paths of causal interaction. He shows that efficient diagnosis, while retaining
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completeness,can be obtained by initially considering models with only a few paths

of interactions, and adding in additional paths when the model fails to account for

the symptoms.

While we have not focussed on the task of diagnosis, one can see that our simplicity

ordering on models lends itself to the above diagnosis technique: diagnosis starts with

the minimal causal model, with successively more complex models being used if a

model is unable to account for the symptoms. The restrictions in Sections 5 and 6

ensure that using more complex models will add new paths of causal interaction.

The compact representation of the space of device models as a set of model frag-

ments originated in the work on compositional modeling [13; 14]. In this work, each

model fragment is conditioned on a set of modeling assumptions, with mutually con-

tradictory assumptions being organized into assumption classes. A set of constraints

govern the use of these assumptions, and a user query focuses model selection. An

adequate device model is a simplest model that contains all the terms mentioned in

the query, and uses only model fragments that are entailed by a set of mutually con-

sistent assumptions satisfying all the constraints. An adequate model is constructed

using a variant of constraint satisfaction called dynamic constraint satisfaction [27].

The primary difference between their work and ours is in the definition of model

adequacy: they have no counterpart of the expected behavior. Our focus on the

task of causal explanation has allowed us to use the expected behavior as a central

constraint on model adequacy, thereby decreasing the importance of the coherence

constraints. This task focus has allowed us to develop a polynomial time algorithm

for finding adequate models. Note that the decrease in the importance of coherence

constraints means that the restriction on their expressive power (Equation 20) is less

serious. On the other hand, in compositional modeling, the constraints on the use

of assumptions play a central role in defining model adequacy, and any task focus

has to be embedded in these constraints. Embedding such a task focus is, in general,

not easy. For example, it is not clear how the expected behavior of a device can

be expressed as a set of declarative constraints. Furthermore, any restriction on the

expressive power of the constraints would be a serious limitation. Hence, their model

selection algorithm is based on dynamic constraint satisfaction, which can, in the

worst case, take exponential time.

The definition of model adequacy used in this paper does not explicitly include

model accuracy. The work on graphs of models [1] discusses a technique for selecting

models of acceptable accuracy. A graph of models is a graph in which the nodes are

models and the edges are assumptions that have to be changed in moving from one

model to another. A model in this graph has acceptable accuracy if its predictions

are free of conflicts, which are detected by validating the model's predictions either

against empirical data or against consistency constraints. When a conflict is detected,

a set of domain-dependent parameter change rules help to select a more accurate

model, and the above process is repeated. Analysis begins with the simplest model

in the graph of models, and terminates when an accurate enough model has been

found. Weld extends this work by introducing an interesting class of approximations
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calledfitting approximations [42]. Informally, a model M2 is a fitting approximation

of a model M1 if Ml contains an exogenous parameter, called a fitting parameter,

such that the predictions using M1 approach the predictions using Ms, as the fitting

parameter approaches a limit. Weld shows that when all approximations are fitting

approximations, the domain-dependent parameter change rules can be replaced by

an efficient domain-independent method for improving model accuracy.

Fitting approximations and causal approximations are fundamentally incompara-

ble because the former talks about behavior differences, while the latter talks about

causal dependencies. However, in practice, it appears that fitting approximations are

also causal approximations. For example, all the fitting approximations given in [43]

are also causal approximations. This means that our model selection method can

be combined with his techniques for reasoning about model accuracy, e.g., by using

our techniques for selecting the initial model in the graph of models, and using his

technique to navigate to models of acceptable accuracy.

In [49], Williams introduces the notion of a critical abstraction, which is a parsi-

monious description of a device relative to a set of questions. Given a device model,

he constructs a critical abstraction in three steps: (a) eliminating superfluous interac-

tions; (b) aggregating interactions that are local to a single mechanism using symbolic

algebra; and (c) further abstracting the aggregated interactions.

His motivations for creating critical abstractions are very similar to our motiva-

tions for finding minimal causal models--we are both striving to find parsimonious

descriptions of how a device works. Furthermore, his abstraction process is similar to

our model simplification procedure. In fact, the first step of his abstraction process,

which eliminates superfluous interactions, is similar to our type 2 simplifications. The

primary difference between our approaches is one of emphasis: we have focussed on

the problem of selecting approximations from a prespecified space of possible approx-

imations, while he has focussed on finding techniques for automatically abstracting a

base model.

8 Conclusions

Constructing adequate problem representations involves the identification of abstrac-

tions and approximations that are particularly suited for the problem solving task.

In this paper we presented a formalization of the problem of automatically select-

ing adequate models for physical systems. We formulated this problem as a search

problem, requiring answers to the following three questions:

• What is a model, and what is the space of possible models?

• What is an adequate model?

• How do we search the space of possible models for adequate models?
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We defined a model as a set of model fragments, where a model fragment is a set

of independent algebraic, qualitative, and/or differential equations that partially de-

scribes some physical phenomena. The space of possible models was defined implicitly

by a library of model fragments: different subsets of model fragments in this library

correspond to different models. We gave a precise definition of model adequacy, which

was tuned to the task of generating parsimonious causal explanations. An adequate

model was defined as a consistent and complete model that could explain the phe-

nomenon of interest. In addition, an adequate model was required to satisfy any

applicable domain-dependent constraints. Finally, an adequate model was required

to be be as simple as possible, with model simplicity being based on the intuition

that modeling fewer phenomena more approximately leads to simpler models.

We then showed that the problem of finding an adequate model is, in general,

intractable (NP-hard). In doing this, we identified three different sources of in-

tractability: (a) deciding what phenomena to model; (b) deciding how to model

selected phenomena; and (c) having to satisfy all the domain-dependent constraints

The intractability of the above problem means that, in general, we can't do much

better than search a significant fraction of the whole space of possible models. Un-

fortunately, even for simple devices, the space of possible models is extremely large,

making any sort of brute force search completely impractical. To make model selection

practical, we introduced a new class of approximations called causal approximations.

Causal approximations form the cornerstone of an important monotonicity property:

as models become simpler, the caus:.l relations entailed by the model decrease mono-

tonically. This property allows us to develop an efficient algorithm for finding ade-

quate adequate models. Causal approximations are particularly useful because most

commonly used approximations are causal approximations. The results of this paper

have been incorporated into an implemented model selection program described in [28;
20].

The work described here can be extended in a number of ways. The most natural

extension is to develop more expressive languages for representing the expected be-

havior. While developing more expressive languages is in itself not difficult, the real

challenge is to develop more expressive tractable languages. This is important because

a central goal of selecting adequate models is to aid effective problem solving. This

goal is compromised if the model selection method resulting from using an expressive

language for the expected behavior is itself intractable. Hence, an important direction

of future research is the development of more expressive languages for expressing the

expected behavior that still allow efficient model selection algorithms.

Another natural direction for future work is to develop efficient model selection

techniques for other tasks. A particularly promising task appears to be diagnosis,

where there is an emerging understanding of what it means for a model to b,_"adequate

for diagnosis [9; 20]. Furthermore, as the discussion in Section 7 suggests, we believe

that the techniques developed in this paper will prove valuable in developing methods

for selecting adequate models for diagnosis.
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A Examples of causal approximations

In this appendix we present a list of commonly used approximations that can be ex-

pressed as causal approximations. Most of these approximations have been borrowed

from the fitting approximations listed in [43], though most of the actual equations

have been adapted from [18].

Each of the items in this list correspond to a single assumption class. The equa-

tions of the different model fragments are presented in a tabular form. Model frag-

ments lower in the table are approximations of model fragments higher in the table,

while model fragments at the same level are not approximations of each other.

. Translational inertia

Newton's second law of motion predicts that the acceleration, a, of a body of

mass, m, is proportional to the net force, F, acting on the b_dy. It is common

to approximate this law by assuming that the mass, and hei: the net force, is

zero.

Newton's second law F = ma

No translational inertia F = 0

2. Rotational inertia

This is similar to translational inertia, a is the angular acceleration, I is the

moment of inertia, and r is the net torque.

Newton's second law [ -r = Ia

No rotational inertia I "r = 0
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3. Relativistic mass

Einstein's special theory of relativity predicts that the mass, m, of an object

increases as its velocity, v, increases. The mass at zero velocity is called the rest

mass, m0. However, this effect is noticeable only at velocities approaching the

speed of light, c. At more ordinary velocities, it is common to assume that the
mass is constant.

Special theory of relativity

Non-relativistic mass

rn 0
m_-._

V/i-
exogenous (in)

4. Relativistic motion

Let S and S' be observers such that S' is moving at velocity v with respect to

S. Let S and S' observe the same event. Let S record the time and position

of the event as t and x, and let S' record the time and position of the event

as t' and x'. The relationship between x, x', t, and t' is given by the Lorentz

transformation. However, at velocities much smaller than the speed of light, c,

it is common to use the simpler Galilean transformations.

z -- vL
Lorentz transformation a_' =

Vh -
t-

t'= ¢I- =Galilean transformation i' = a_ - vt

t'=t

5. Deformable bodies

When elastic bodies are acted upon by a force, F, they deform by an amount,

x. The deformation is proportional to the force (k is the constant of proportion-

ality), and the relationship between the two is given by Hooke's law. However,

it is common to assume that bodies are rigid, so that there is no deformation

caused by an applied force.

Hooke's law i F = -k_

Rigid bodies Iz = 0

6. Friction

When two bodies move against each other a frictional force, f, impedes the

motion. The frictional force is proportional to the force, N, acting normal

to the direction of motion, and the constant of proportionality is called the

coefficient of friction, #. However, when motion involves smooth surface, it is

common to disregard the frictional force.
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Motion with friction [ f = pN

Frictionless motion [ f = 0

7. Gravitational fields

Newton's law of gravitation predicts that the acceleration due to gravity, g, at a

distance r from an object of mass M is proportional to the mass and is inversely

proportional to the square of the distance (the constant of proportionality is

the Gravitational constant, G). When the variation in r is small compared the

magnitude of r, it is common to assume that the acceleration due to gravity

is essentially constant. This can be further approximated, when r becomes

sufficiently large, by assuming that the acceleration due to gravity is essentially

zero.

Newton's law of eravity

Constant gravi L

Zero gravity

g = GM/r 2

exogenous (g )

g--O

8. Collisions

Collisions between objects are typically inelastic. If an object approaches a

stationary wall at velocity vi, then the velocity after the collision v/is attenuated

by the coefficient of restitution, a. This is often approximated by assuming

that the collision is elastic, so that the initial and final velocities are equal in

magnitude.

Inelastic collision v! = -av,

Elastic collision v! = -vi

9. Gas laws

The ideal gas law provides a relationship between the pressure, P, the volume,

V, and the temperature, T, of a mole of gas. A more accurate gas law is the Van

der Waals equation of state, that accounts for the non-zero size of gas molecules,

and that gas molecules repel each other at short distances. In these equations,

R is the universal gas constant, and a and b are experimental constants.

a b) RT
Van der Waals gas (P + _--_)(V- =

Ideal gas law PV = RT

10. Thermal conduction

The rate of heat flow, f, across a thermal conductor is proportional to the

difference in temperature at the two ends of the conductor (T1 and T2 are the two
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mperatures). The constant of proportionality is the thermal conductance, 7.

There are two different ways of approximating this model. First, we can assume

that the conductor is an ideal thermal insulator, so that there is no heat flow.

Second, we can assume that the conductor is an ideal thermal conductor, so

that there is never a difference between the two temperatures.

Thermal conduction ill f = 7(T_ - T, )Ideal thermal insulator I -/' = 0 Ideal thermal conductor I TI = T_

11. Thermal conductance

The thermal conductance, 7, of a thermal conductor is dependent on the length,

l, the cross-sectional area, A, and the thermal conductivity, k, of the conductor.

When the dependence of 7 on these factors is unnecessary, one can merely
assume that it is constant.

Dependent thermal conductance _t = kA/l

Constant thermal conductance exogenous('7)

12. Electrical conduction

The current flow, i, across an electrical conductor is proportional to the voltage

drop, V, across the conductor. The constant of proportionality is the resis-

tance, R, and the relationship is Ohm's law. There are two different ways of

approximating this model. First, we can assume that the conductor is an ideal

electrical insulator, so that there is no current flow. Second, we can assume

that the conductor is an ideal electrical conductor, so that the voltage drop is

always zero.

Ohm's law ill V = iRIdeal electrical insulator [ i = 0 Ideal electrical conductor ] V = 0

13. Electrical resistance

The electrical resistance, R, of an electrical conductor is dependent on the

length, l, the cross-sectional area, A, and the resistivity, p, of the conductor.

When the dependence of R on these factors is unnecessary, one can merely

assume that it is constant.

Dependent resistance R = pl/A

Constant resistance exogenous(R)
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14. Resistivity

The resistivity, p, of an electrical conductor is a function of the temperature, T,

of the conductor, p0 is the resistivity at temperature To, and a is the coefficient

of resistivity. However, this dependence is often neglected, and the resistivity
is assumed to be constant.

Temperature dependent resistivity I P = p0(1 + _(T - To))

Constant resistivity I exogenous(p)

15. Heat engine

A heat engine can be thought of as a cyclic process that extracts heat from a

high temperature source, converts part of this heat into work, and discharges

the rest of the heat to a low temperature sink. The efficiency, e, of a heat engine

is the fraction of extracted heat that is converted into work. Carnot showed that

the efficiency of an ideal heat engine is a function of the source temperature,

T1, and sink temperature, T2, and that the efficiency of a real heat engine is less

than or equal to the ideal efficiency by an efficiency factor, 7.

Real heat engine e = 7(1 - T2/T1)

Ideal heat engine e = (1 - T_/T1)

16. Laminar flow in horizontal pipes

The rate, V, of laminar flow of a fluid in a pipe is a proportional to the difference

between the pressure at one end of the pipe, P1, and the pressure at the other end

of the pipe, P2. The pressure drop in the pipe is due to the viscous resistance,

R, of the fluid. This model is often approximated to disregard the viscous

resistance, so that there is no pressure drop across the pipe.

Viscous flow I P, - P_ = RV

Inviscid flow [ P, P_

17. Thermal expansion

When objects are heated, they expand. The amount of expansion, 5, is a

function of the object's temperature, T, and the coefficient of thermal expansion,

or. _ is assumed to be zero when the size of the object is l0 at temperature To.

This expansion is often quite small, and can be disregarded for many purposes.

Thermal expansion 6 = alo(T - To)

No thermal expansion 6 = 0
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Dynamic thermal model[Constant temperature[ exogenous(T)

18. Temperature of an object

The rate of change of the temperature, T, of an object is a function of the

net heat, F, flowing into the object and the object's heat capacity, C. This

equation can be exogenized by assuming that the the temperature is constant,

and equilibrated by assuming that the temperature quickly adjusts itself to

ensure that the net heat flow is zero. It's not a self regulating equation.

dT
--=CF
dt

Equilibrium temperature I F = 0

19. Falling raindrop

The atmospheric drag, mdv/dt, felt by a falling raindrop is proportional to its

velocity, v. Eventually, the raindrop reaches its terminal velocity, where dv/dt
becomes zero.

Atmospheric drag

Terminal velocity

d_

m-_ = rng - kv

mg = kv

The following are examples of approximations that are not causal approximations.

1. Viscosity of gases

The viscosity, #, of a gas is a function of its temperature, T, and mass, rn,

(equivalently, its molecular weight, M). There are at least two models of this

dependence. An approximate model assumes that the gas molecules are hard

balls of diameter d. A more accurate model models the gas molecule as a force

field, and uses the Lennard Jones potential energy function. These models have

been taken from [46].

Force field model

.

Rigid sphere model

/z = 2.6693 x 10 -6
0"2_p

2 _/mnT

/.Z- 3_.3/2 d2

Note that the force field model does not contain parameters like d that are found

in the rigid sphere model. While this approximation does not fit our definition

of a causal approximation, one can see that it almost does. In particular, if

we are only interested in the dependence of # on T, then the approximation

behaves like a causal approximation.

Some approximations are not usually expressed as equations, but are incorpo-

rated implicitly into the model. For example, rather than being expressed as

an explicit equation, the assumption that a rope is unbreakable is usually in-

corporated implicitly into the model. This makes it difficult to decide whether

or not "unbreakable rope" is a causal approximation.
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B Composable operators

Since model fragments are partial descriptions of phenomena, it is useful to allow

them to specify partial information about equations. The most commonly used types

of partial information, and the ones we consider in this appendix, are the I+/I-

operators, first introduced in [15]. These operators allow the specification of partial

derivative information. I+(q,,q2) states that q2 is a positive influence on ql, while

I-(q,, q2) states that q2 is a negative influence on ql. Given a set of positive and

negative influences on a parameter, q, a single equation is created by: (a) forming the

term resulting from the difference of the sum of the all the positive influences and the

sum of all the negative influences; and (b) making the derivative of q be equal to this

term. For example, the set {I+(q_,q2),I-(q,,q3),I+(q,,q4)} produces the equation

(note that only dql/dt can be causally determined by this equation):

dq,/dt = q2 - q3 -4- q4

The causal approximation definition can be extended in a straightforward manner

to handle I+/I- operators as follows. Let rn2 be a causal approximation of ml,

and let q be a parameter. If m2 contains influences on '1, we will require that the

influences on q in rn_ are a superset of the influences on q in ms. It is then easy

to verify that replacing ms by ml will increase the causal relations monotonically

by adding in the new causal relations corresponding to the additional influences.

If m2 does not include influences on q, then we will require that ml can contain

influences on q only if dq/dt is local to rnl, but not local to ms. This restriction

is completely analogous to Condition 3 in Definition 13, since it ensures that the

equation resulting from the newly introduced influences can causally determine _.,t/dt.

To allow influences on a parameter to occur in model fragments of different assumption

classes, we ne_,t to modify Condition 1 of Definition 22. In particular, derivatives

determined by influences will not be required to be local (except when required by

the above extension to the causal approximation definition). This modification does

not affect the results of Section 6, since the equations resulting from influences cannot

be equilibrated or exogenized.

Similar extensions can be made to handle other types of partial information such

as the qualitative proportionalities (_Q:e) introduced in [15].
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